Asymptotic Laws for the Spatial Distribution and the Number of Connected Components of Zero Sets of Gaussian Random Functions
We study the asymptotic laws for the spatial distribution and the number of connected components of zero sets of smooth Gaussian random functions of several real variables. The primary examples are various Gaussian ensembles of real-valued polynomials (algebraic or trigonometric) of large degree on...
Saved in:
Date: | 2016 |
---|---|
Main Authors: | Nazarov, F., Sodin, M. |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2016
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/140554 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Asymptotic Laws for the Spatial Distribution and the Number of Connected Components of Zero Sets of Gaussian Random Functions / F. Nazarov, M. Sodin // Журнал математической физики, анализа, геометрии. — 2016. — Т. 12, № 3. — С. 205-278. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Asymptotic Laws for the Spatial Distribution and the Number of Connected Components of Zero Sets of Gaussian Random Functions
by: F. Nazarov, et al.
Published: (2016) -
On the Number of Zeros of Functions in Analytic Quasianalytic Classes
by: S. Sodin
Published: (2020) -
On the strong law of large numbers for φ-sub-Gaussian random variables
by: K. Zajkowski
Published: (2021) -
Class of non-gaussian symmetric distributions with zero coefficient of kurtosis
by: A. I. Krasilnikov
Published: (2017) -
On the simulation of the mathematical expectation and variance of samples for gaussian-distributed random variables
by: P. Kosobutskyy
Published: (2017)