Maxwell-Bloch Equations without Spectral Broadening: Gauge Equivalence, Transformation Operators and Matrix Riemann-Hilbert Problems

A mixed initial-boundary value problem for nonlinear Maxwell{Bloch (MB) equations without spectral broadening is studied by using the inverse scattering transform in the form of the matrix Riemann{Hilbert (RH) problem. We use transformation operators whose existence is closely related with the Gours...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Filipkovska, M.S., Kotlyarov, V.P., Melamedova, E.A.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/140568
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Maxwell-Bloch Equations without Spectral Broadening: Gauge Equivalence, Transformation Operators and Matrix Riemann-Hilbert Problems / M.S. Filipkovska, V.P. Kotlyarov, E.A. Melamedova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 119-153. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:A mixed initial-boundary value problem for nonlinear Maxwell{Bloch (MB) equations without spectral broadening is studied by using the inverse scattering transform in the form of the matrix Riemann{Hilbert (RH) problem. We use transformation operators whose existence is closely related with the Goursat problems with nontrivial characteristics. We also use a gauge transformation which allows us to obtain Goursat problems of the canonical type with rectilinear characteristics, the solvability of which is known. The transformation operators and a gauge transformation are used to obtain the Jost type solutions of the Ablowitz-Kaup-Newel-Segur equations with well-controlled asymptotic behavior by the spectral parameter near singular points. A well posed regular matrix RH problem in the sense of the feasibility of the Schwartz symmetry principle is obtained. The matrix RH problem generates the solution of the mixed problem for MB equations.