Maxwell-Bloch Equations without Spectral Broadening: Gauge Equivalence, Transformation Operators and Matrix Riemann-Hilbert Problems

A mixed initial-boundary value problem for nonlinear Maxwell{Bloch (MB) equations without spectral broadening is studied by using the inverse scattering transform in the form of the matrix Riemann{Hilbert (RH) problem. We use transformation operators whose existence is closely related with the Gours...

Full description

Saved in:
Bibliographic Details
Date:2017
Main Authors: Filipkovska, M.S., Kotlyarov, V.P., Melamedova, E.A.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/140568
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Maxwell-Bloch Equations without Spectral Broadening: Gauge Equivalence, Transformation Operators and Matrix Riemann-Hilbert Problems / M.S. Filipkovska, V.P. Kotlyarov, E.A. Melamedova // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 2. — С. 119-153. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:A mixed initial-boundary value problem for nonlinear Maxwell{Bloch (MB) equations without spectral broadening is studied by using the inverse scattering transform in the form of the matrix Riemann{Hilbert (RH) problem. We use transformation operators whose existence is closely related with the Goursat problems with nontrivial characteristics. We also use a gauge transformation which allows us to obtain Goursat problems of the canonical type with rectilinear characteristics, the solvability of which is known. The transformation operators and a gauge transformation are used to obtain the Jost type solutions of the Ablowitz-Kaup-Newel-Segur equations with well-controlled asymptotic behavior by the spectral parameter near singular points. A well posed regular matrix RH problem in the sense of the feasibility of the Schwartz symmetry principle is obtained. The matrix RH problem generates the solution of the mixed problem for MB equations.