Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain

We consider a boundary-value problem for the Poisson equation in a strongly perforated domain Ωε = Ω\Fε ⊂ Rⁿ (n ≥ 2) with non-linear Robin's condition on the boundary of the perforating set Fε. The domain Ωε depends on the small parameter ε > 0 such that the set Fε becomes more and more loos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Khruslov, E.Ya., Khilkova, L.O., Goncharenko, M.V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2017
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/140576
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Integral Conditions for Convergence of Solutions of Non-Linear Robin's Problem in Strongly Perforated Domain / E.Ya. Khruslov, L.O. Khilkova, M.V. Goncharenko // Журнал математической физики, анализа, геометрии. — 2017. — Т. 13, № 3. — С. 283-313. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We consider a boundary-value problem for the Poisson equation in a strongly perforated domain Ωε = Ω\Fε ⊂ Rⁿ (n ≥ 2) with non-linear Robin's condition on the boundary of the perforating set Fε. The domain Ωε depends on the small parameter ε > 0 such that the set Fε becomes more and more loosened and distributes more densely in the domain Ω as ε→0. We study the asymptotic behavior of the solution uε(x) of the problem as ε→0. A homogenized equation for the main term u(x) of the asymptotics of uε(x) is constructed and the integral conditions for the convergence of uε(x) to u(x) are formulated.