On recent advances in boundary value problems in the plane

The survey is devoted to recent advances in nonclassical solutions of the main boundary value problems such as the well–known Dirichlet, Hilbert, Neumann, Poincare and Riemann problems in the plane. Such solutions are essentially different from the variational solutions of the classical mathematical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Gutlyanskii, V.Y., Ryazanov, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2016
Schriftenreihe:Український математичний вісник
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/140900
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On recent advances in boundary value problems in the plane / V.Y. Gutlyanskii, V.I. Ryazanov // Український математичний вісник. — 2016. — Т. 13, № 2. — С. 167-212. — Бібліогр.: 76 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The survey is devoted to recent advances in nonclassical solutions of the main boundary value problems such as the well–known Dirichlet, Hilbert, Neumann, Poincare and Riemann problems in the plane. Such solutions are essentially different from the variational solutions of the classical mathematical physics and based on the nonstandard point of view of the geometrical function theory with a clear visual sense. The traditional approach of the latter is the meaning of the boundary values of functions in the sense of the so–called angular limits or limits along certain classes of curves terminated at the boundary. This become necessary if we start to consider boundary data that are only measurable, and it is turned out to be useful under the study of problems in the field of mathematical physics, too. Thus, we essentially widen the notion of solutions and, furthermore, obtain spaces of solutions of the infinite dimension for all the given boundary value problems. The latter concerns to the Laplace equation as well as to its counterparts in the potential theory for inhomogeneous and anisotropic media.