Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic)

It is established that the growth of quartz in veins in granodiorites of the Andean intrusive complex (the Barchans Islands, West Antarctic) happened in rock crystalbearing veins of steep falling, in which the temperature difference necessary for the dissolution of massive quartz and crystallizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Naumko, I.М., Artemenko, G.V., Bakhmutov, V.G., Vovk, O.P., Теlepko, L.F., Sakhno, B.E.
Format: Artikel
Sprache:English
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2018
Schriftenreihe:Доповіді НАН України
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/141148
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic) / I.М. Naumko, G.V. Аrtemenko, V.G. Bakhmutov, O.P. Vovk, L.F. Теlepko, B.E. Sakhno // Доповіді Національної академії наук України. — 2018. — № 4. — С. 74-80. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-141148
record_format dspace
spelling irk-123456789-1411482020-12-08T15:09:40Z Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic) Naumko, I.М. Artemenko, G.V. Bakhmutov, V.G. Vovk, O.P. Теlepko, L.F. Sakhno, B.E. Науки про Землю It is established that the growth of quartz in veins in granodiorites of the Andean intrusive complex (the Barchans Islands, West Antarctic) happened in rock crystalbearing veins of steep falling, in which the temperature difference necessary for the dissolution of massive quartz and crystallization of its transparent variety in the shape of perfectly cut crystals in central parts of secant veins was reached. The discovered enrichment of the fluid medium of the quartz crystallization with СО₂, NaCl, and ÊCl indicates a carbonatehaloid composition of quartzforming fluids, which favoured the formation of jewelry and technologically perfect crystals, possibly having piezoelectric properties similar to crystals of quartz both from rockcrystalbearing veins of the Nearpolar Ural and those synthesized under laboratory conditions. As a conclusion, the connection of quartzforming fluids and the postmagmatic processes in a granodiorite intrusion is justified, and the view of investigated quartz veins as formations of posttectonic hydrothermal stage is confirmed and expanded. Bстановлено, що ріст жильного кварцу в гранодіоритах андського інтрузивного комплексу (острови Бархани, Західна Антарктида) здійснювався у кришталеносних жилах крутого падіння, в яких досягався перепад температури, необхідний для розчинення масивного кварцу і кристалізації його прозорого різновиду у вигляді прекрасно огранених кристалів у центральних частинах січних жил. Виявлена збагаченість флюїдного середовища кристалізації кварцу СО₂, NaCl і КCl вказує на карбонатно-галоїдний склад кварцутворювальних флюїдів, що сприяло формуванню ювелірно і технологічно досконалих кристалів, можливо, з п'єзоелектричними властивостями, подібно до кристалів кварцу, як кришталеносних жил Приполярного Уралу, так і синтезованих у лабораторних умовах. У підсумку обгрунтовано зв'язок кварцутворювальних флюїдів та постмагматичних процесів у гранодіоритовій інтрузії і підтверджено та розвинено точку зору на вивчені кварцові жили як на утворення посттектонічної гідротермальної стадії. Установлено, что рост жильного кварца в гранодиоритах андского интрузивного комплекса (острова Барханы, Западная Антарктида) осуществлялся в хрусталеносных жилах крутого падения, в которых достигался перепад температуры, необходимый для растворения массивного кварца и кристаллизации его прозрачной разновидности в виде прекрасно ограненных кристаллов в центральных частях секущих жил. Выявленнoe обогащениe флюидной среды кристаллизации кварца СО₂, NaCl и КCl указывает на карбонатно-галоидный состав кварцобразующих флюидов, что способствовало формированию ювелирно и технологически совершенных кристаллов, возможно, с пьезоэлектрическими свойствами, подобно кристаллам кварца, как хрусталеносных жил Приполярного Урала, так и синтезированных в лабораторных условиях. В итоге обоснована связь кварцобразующих флюидов и постмагматических процессов в гранодиоритовой интрузии и подтверждена и развита точка зрения на изученные кварцевые жилы как на образования посттектонической гидротермальной стадии. 2018 Article Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic) / I.М. Naumko, G.V. Аrtemenko, V.G. Bakhmutov, O.P. Vovk, L.F. Теlepko, B.E. Sakhno // Доповіді Національної академії наук України. — 2018. — № 4. — С. 74-80. — Бібліогр.: 15 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2018.04.074 http://dspace.nbuv.gov.ua/handle/123456789/141148 548.4:550.4:549.514.51:553.271.1:552.321 (99) en Доповіді НАН України Видавничий дім "Академперіодика" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Науки про Землю
Науки про Землю
spellingShingle Науки про Землю
Науки про Землю
Naumko, I.М.
Artemenko, G.V.
Bakhmutov, V.G.
Vovk, O.P.
Теlepko, L.F.
Sakhno, B.E.
Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic)
Доповіді НАН України
description It is established that the growth of quartz in veins in granodiorites of the Andean intrusive complex (the Barchans Islands, West Antarctic) happened in rock crystalbearing veins of steep falling, in which the temperature difference necessary for the dissolution of massive quartz and crystallization of its transparent variety in the shape of perfectly cut crystals in central parts of secant veins was reached. The discovered enrichment of the fluid medium of the quartz crystallization with СО₂, NaCl, and ÊCl indicates a carbonatehaloid composition of quartzforming fluids, which favoured the formation of jewelry and technologically perfect crystals, possibly having piezoelectric properties similar to crystals of quartz both from rockcrystalbearing veins of the Nearpolar Ural and those synthesized under laboratory conditions. As a conclusion, the connection of quartzforming fluids and the postmagmatic processes in a granodiorite intrusion is justified, and the view of investigated quartz veins as formations of posttectonic hydrothermal stage is confirmed and expanded.
format Article
author Naumko, I.М.
Artemenko, G.V.
Bakhmutov, V.G.
Vovk, O.P.
Теlepko, L.F.
Sakhno, B.E.
author_facet Naumko, I.М.
Artemenko, G.V.
Bakhmutov, V.G.
Vovk, O.P.
Теlepko, L.F.
Sakhno, B.E.
author_sort Naumko, I.М.
title Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic)
title_short Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic)
title_full Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic)
title_fullStr Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic)
title_full_unstemmed Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic)
title_sort quartz forming conditions in secant veins in granodiorites of the andean intrusive complex of the barchans islands (аrgentine islands, west antarctic)
publisher Видавничий дім "Академперіодика" НАН України
publishDate 2018
topic_facet Науки про Землю
url http://dspace.nbuv.gov.ua/handle/123456789/141148
citation_txt Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic) / I.М. Naumko, G.V. Аrtemenko, V.G. Bakhmutov, O.P. Vovk, L.F. Теlepko, B.E. Sakhno // Доповіді Національної академії наук України. — 2018. — № 4. — С. 74-80. — Бібліогр.: 15 назв. — англ.
series Доповіді НАН України
work_keys_str_mv AT naumkoim quartzformingconditionsinsecantveinsingranodioritesoftheandeanintrusivecomplexofthebarchansislandsargentineislandswestantarctic
AT artemenkogv quartzformingconditionsinsecantveinsingranodioritesoftheandeanintrusivecomplexofthebarchansislandsargentineislandswestantarctic
AT bakhmutovvg quartzformingconditionsinsecantveinsingranodioritesoftheandeanintrusivecomplexofthebarchansislandsargentineislandswestantarctic
AT vovkop quartzformingconditionsinsecantveinsingranodioritesoftheandeanintrusivecomplexofthebarchansislandsargentineislandswestantarctic
AT telepkolf quartzformingconditionsinsecantveinsingranodioritesoftheandeanintrusivecomplexofthebarchansislandsargentineislandswestantarctic
AT sakhnobe quartzformingconditionsinsecantveinsingranodioritesoftheandeanintrusivecomplexofthebarchansislandsargentineislandswestantarctic
first_indexed 2025-07-10T12:04:19Z
last_indexed 2025-07-10T12:04:19Z
_version_ 1837261454292549632
fulltext 74 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2018. № 4 © I.М. Naumko, G.V. Аrtemenko, V.G. Bakhmutov, O.P. Vovk, L.F. Теlepko, B.E. Sakhno, 2018 The Antarctic Peninsula block in the Western Antarctica has traditionally been considered as a magmatic arc formed along the south­western part of the Paleo­Pacific subregion during the collapse of the Gondwana supercontinent. About 80 % of the rocks of the Western Antarctica and the adjacent Bellingshausen Sea shelf area are represented by two groups of rocks – the in trusions of the batholiths of the Antarctic Peninsula (AP batholiths), also known as Andean Intrusive Suite rocks, and Volcanogenic rocks of the Antarctic Peninsula [1–3]. Intrusive rocks of the Antarctic Peninsula are gabbro and granitoids (with prevalence of granodiorites). The age of their formation in the studied region ranges from 105 to 84 million years ago [4, 5]. A group of volca­ doi: https://doi.org/10.15407/dopovidi2018.04.074 UDK 548.4:550.4:549.514.51:553.271.1:552.321 (99) I.М. Naumko 1, G.V. Аrtemenko 2, V.G. Bakhmutov 3, O.P. Vovk 4, L.F. Теlepko 1, B.E. Sakhno 1 1 Institute of Geology and Geochemistry of Combustible Minerals of the NAS of Ukraine, Lviv 2 M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kiev 3 S.I. Subbotin Institute of Geophysics of the NAS of Ukraine, Kiev 4 Lesya Ukrainka Eastern European National University, Lutsk E­mail: igggk@mail.lviv.ua, regul@igmof.gov.ua, bakhm@igph.kiev.ua, geologygeochemistry@gmail.com Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic) Presented by Academician of the NAS of Ukraine O.M. Ponomarenko It is established that the growth of quartz in veins in granodiorites of the Andean intrusive complex (the Barchans Islands, West Antarctic) happened in rock crystal­bearing veins of steep falling, in which the temperature difference necessary for the dissolution of massive quartz and crystallization of its transparent variety in the shape of perfectly cut crystals in central parts of secant veins was reached. The discovered enrichment of the fluid medium of the quartz crystallization with СО2, NaCl, and КCl indicates a carbonate­haloid composition of quartz­forming fluids, which favoured the formation of jewelry and technologically perfect crystals, possibly having piezoelectric properties similar to crystals of quartz both from rock­crystal­bearing veins of the Near­polar Ural and those synthesized under laboratory conditions. As a conclusion, the connection of quartz­forming fluids and the postmagmatic processes in a granodiorite intrusion is justified, and the view of investigated quartz veins as formations of post­tectonic hydrothermal stage is confirmed and expanded. Кeywords: quartz, crystal morphology, fluid inclusions, volatile components, secant veins, granodiorites, the Barchans Islands, West Antarctic. 75ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2018. № 4 Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands... nogenic rocks represented by lavas and tuffogeneous rocks is traditionally assigned to the Upper Jurassic (188–153 million years ago) [5]. Our work scope includes the Barchans Islands (65°15′ S, 64°15′ W) located in the western part of the Argentine Islands archipelago in a vicinity of the Ukrainian Antarctic station “Aca­ demician Vernadsky”. The group of the Barkhans Islands includes three relatively large islands (sized about 0.5 km2 each) and several dozens of small islands (sized from several to tens of m2). They are composed of granodiorites of the Andean intrusive complex. On the Barkhans islands, there exists a series of quartz veins up to 10 m thick that cut through the granodiorite of the An des complex (azimuth — 75 degrees North­East, the angle of incidence — 68 degrees). In the veins of white effluent quartz, there are concentrations of ore minerals sized up to 10x15 cm. They were first described in work [6], in which it was noted that ore minerals are found in the veins — magnetite, pyrite, epidote. In the course of field expeditionary studies, samples from secant veins of white massive quartz were collected, in which single nests with perfectly cut crystals of transparent quartz occur [7]. The collected crystals of quartz became the object of complex mineralogical­genetic and ther­ mobarogeochemical­mineralfluidological studies, the results of which allowed one to determine the peculiarities of quartz­forming fluids. The crystal morphology of quartz was studied, using a two­pointed goniometer GD­1 accord­ ing to the method in [8]. X­ray analysis was performed on a diffractometer ADP­2.0, Fe K α radiation, Mn­filter; conditions of shooting: I = 14 mA, U = 34 kV, meter speed 2 degrees / min (analyst Ya.V. Yaremchuk, the X­ray laboratory of the Department of geochemistry of sedimen­ tary strata of oil and gas provinces of IGGGK of the NAS of Ukraine, Lviv). The content of im­ purities was determined by the spectral method (analyst R. P. Kozak, Laboratory of geoecology problems of IGGGK of the NAS of Ukraine, Lviv). The aggregate state and the homogenization temperature of inclusions in quartz were determined by the thermometric method [9]. Compo­ sition of volatile components, their relative gas saturation (increase of the pressure in the inlet system of a mass spectrometer relative to its residual value of the order of 1 · 10–3 Pa in the grind­ ing chamber (∆P), Pa), and water saturation (water vapor content in the total volume of volatile components ( 2Н ОС ), vol. %) were determined by the mass­spectrometric chemical method (de­ vice MSH­3A) (analyst B. E. Sakhno, Laboratory of mass­spectrometric chemical ana lysis of the Department of Geochemistry of deep fluids, IGGGK of the NAS of Ukraine, Lviv). The inclusions were exposed by crushing the standard sample of 200 mg, a fraction of +1—2 mm in a small metal cylindrical mortar between two planar parallel pobedit surfaces (sintered carbide) under high vacuum (1 · 10–3 Pa). The examined quartz crystals are transparent, with shiny surfaces of facets and the hatching and onflows clearly visible on them and clear images of edges. They possess prismatic habitus and elongated shape and are characterized by a perfect cut (Fig. 1). Traditional simple forms such as a hexagonal prism {1010} and two rhombohedra {1011} and {0111} (Fig. 2) are established. External symmetry of the individuum — P (m) — indicates its growth in rock­crystalline nests of steep falling [10] as an important prerequisite for the reproduction of a possible direction of the inflow of quartz­forming fluids. The “lower” part of the crystal is damaged, the head is absent, ap­ parently, as a result of the attachment to the host rock. Four facets of the hexagonal prism can be observed, two are missing. One of these (missing) facets attached the polyhedron to the rock, 76 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2018. № 4 I.М. Naumko, G.V. Аrtemenko, V.G. Bakhmutov, O.P. Vovk, L.F. Теlepko, B.E. Sakhno while, on the other facet, two small crystals of quartz grew in parallel, on which only rhombo­ hedron {0111} is observed. The largest facet of the prism is covered with a traditional quartz hatching perpendicular to L3 and with onflows elongated in the same direction that overlap onto rhombohedron {1011} . On both rhombohedra, all (for one­headed individuum) facets are pre­ sent. Facets {0111} are smoother than {1011} . Occasionally, there is a blunt edge between facets (1010 ) і (1101), which, however, can not be considered as a facet. The results of X­ray analysis (Fig. 3) indicate a quite high chemical purity of the investi­ gated quartz, which is confirmed by the data of the spectral analysis (mass. %): Zr — <0.001, Co — <0.001, Fe — 0.11, Pb — <0.001, Be — <0.0001, Sn — <0.001, Cu — <0.001, Ba — 0.004, Sr — <0.003, Ag — 0.000. Quartz crystals are saturated with fluid inclusions of various genetic types, in particular, gas­liquid, complex with a visible phase of liquid СО2, and multiphase ones with captured mi­ nerals (daughter minerals) (Fig. 4, a—c). Inclusions are located mostly in the planes of cracks or dispersed in separate groups (swarms). Two­phase gas­liquid and liquid­gas inclusions (see Fig. 4, a) are more prevalent; less fre­ quent are single­phase predominantly gas or liquid inclusions. The latter are often segments se­ parated from the main vacuole due to the dissociation or repositioning of mineral matter on the walls of inclusions. Some of them contain a solid xenogenic phase. The shape of inclusions is var­ ied: oval, elongated, angular, irregular, and with “torn” jagged edges. They reach considerable sizes (more than 0.01 mm). Some vacuoles have the shape of perfectly cut negative crystals, or their fragments. The most common temperatures of homogenization of gas­liquid inclusions are the intervals 220—250, 250—270, 270—300 °C, and the highest temperature reaches 370 °C (into the liquid phase). This corresponds to temperatures without correction for pressure, which will be absent in the case of a likely heterogeneous state of the fluid medium of mineralogenesis. Complex inclusions with the visible phase of liquid СО2 are three­phase, have mixedcontent, and are of the type L (solution) + L1 (liquid СО2) + G (gas) = 5—15 + 30–40 + 45—55 (at +12 °С) (see Fig. 4, b). ◄ Fig. 1. General view of the quartz crystals from veins in grano dio rites and diorites of the Andean intrusive complex (sample Q­142/12/1) ► Fig. 2. Crystal morphology of quartz. Traditional simple forms : hexagonal prism {1010}, rhombohedra {1011} and {0111}. External symmetry of the individuum – P(m) 77ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2018. № 4 Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands... Fig. 3. Diffractogram of quartz Composition of the volatile components of fluid inclusions in quartz from veins in granodiorites of the Andean intrusive complex of the Barchans Islands (Аrgentine Islands, West Antarctic) (according to the data from mass­spectrometric chemical analysis1) Sample number Place of the selection Title of mineral Components 2: Voluminous particle, per cent / Mass concentration, n ·10­6 g/g of sample Relative gas saturation ∆ Р, Pа 3 Water saturation 2Н ОС , vol. % Total mass concentration, n · 10–6 g/g of sample 5 СО2 N2 А­142/12/2 (1) Quartz vein, the Barchans Islands Quartz, cent­ er of crystal 97.5 / 293,8 2.5 / 0,08 1.27 52.4 293.88 А­142/12/2 (2) Ibid Quartz, pe­ ri phery of crystal 98.9 / 177,0 1.1 / 0.01 1.13 47.0 177.01 1 Analyst B.E. Sakhno (mass­spectrometer MCX­3A). 2 Sample of quartz of the standard weight of 200 mg and fraction +1—2 was crushed by squashing in a specially designed mortar, before the analysis, the inlet system of the mass­spectrometer was evacuated to values of order 1 · 10–3 Pа. 3 Relative gas saturation ∆ P, Pa — increase of the pressure in the inlet system of a mass spectrometer (with re­ spect to the residual pressure of order 1 · 10–3 Pa in it), which is created as a result of the release of volatile components (without taking into account the steam sorbed on P2O5 placed in the inlet system) from inclu­ sions and closed pores in the chopping of the sample and may be a comparative value for the same weight. 4 Relative water saturation СН2О, vol. % – percentage of the steam that was absorbed on P2O5 placed in the intel system, in the total volume of released volatile components. 5 To determine the mass concentration, the crushed analyzed sample was sifted through a 0.25­mm sieve, and the results were attributed to the sieved portion of the sample. 78 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2018. № 4 I.М. Naumko, G.V. Аrtemenko, V.G. Bakhmutov, O.P. Vovk, L.F. Теlepko, B.E. Sakhno The particular attention is drawn to multiphase inclusions with an authigenic solid phase represented by one or (much rarely) two crystals of a salt, probably (as our experience shows [11, 12]), captured minerals (daughter minerals) — NaCl and KCl) (see Fig. 4, c). This solid phase (NaCl?) in one of the inclusions dissolves at 220 °C, and the complete homogenization of an inclusion is achieved at 270 °C (into the liquid phase). According to data from the mass­spectrometric chemical analysis, the composition of the volatile components of inclusions in quartz is characterized by the clear prevalence of carbon dioxide (97.5—98.9 vol. %) over nitrogen (1.1—2.5 vol. %) (Table). The samples have high rela­ tive gas saturation (1.13—1.27 Pa), water saturation (47.0—52.4 vol. %), and total mass concen­ tration (177.01—293.88 · 10–6 g / g of sample). The above numbers indicate fairly high temperatures and the carbon dioxide­water compo­ sition of quartz­forming fluids. At the mentioned temperatures of the order of 300 °C, the fluid became capable of transferring a significant amount of dissolved components, in particular sili­ ca­containing ones. The growth of perfect crystals was carried out in in rock crystal­bearing veins of steep falling, in which the temperature difference required for the dissolution of massive quartz and the crystallization of its transparent variety in the shape of perfectly cut crystals in the central parts of the quartz vein was achieved. The coexistence of multiphase inclusions with crystals of salts and complex inclusions with the visible phase of liquid СО2 confirms the highly concentrated nature of a fluid, which is separated from the magmatic source, with a significant carbon dioxide content. This conclusion follows logically from the analysis of experimental da­ ta [13] on the homogeneous state of a complex system of Н2О—СО2—NaCl at a high tempera­ ture, its separation during the heterogenization into NaCl or СО2­enriched components, and spatial­temporal difference of their manifestation. Thus, according to the study of inclusions, the enrichment in СО2, NaCl, and KCl of the fluid medium of crystallization of quartz, similar to the rock­crystalline veins of the Near­polar Ural, indicates the carbonate­haloid composition of quartz­forming fluids during the formation of the investigated mineral, which contributed to the formation of jewelry and technologically perfect crystals, possibly having piezoelectric properties. It should be noted that, under labora­ Fig. 4. Fluid inclusions of various genetic types in quartz: a — two­phase gas­liquid inclusion, volumic, with fragments of perfectly cut negative crystals. Temperature of homogenization is 290 °С (into the liquid phase); b — complex inclusions with the visible phase of liquid СО2 of type L (solution) + L1 (liquid СО2) + G (gas); c —multiphase gas­liquid inclusion with an authigenic solid phase – captured mineral (daughter mineral) (crys­ tal of salt — NaCl?). Temperature of crystal dissolution is 220 °C, temperature of complete homogenization is 270 °C (into the liquid phase) 79ISSN 1025­6415. Допов. Нац. акад. наук Укр. 2018. № 4 Quartz forming conditions in secant veins in granodiorites of the Andean intrusive complex of the Barchans Islands... tory conditions, very high quality quartz crystals were synthesized from aqueous solutions of hydroxides and carbonates of alkali metals within a similar interval of temperatures and in the presence of a corresponding temperature gradient [14, 15]. The obtained data indicate the connection of quartz­forming fluids with postmagmatic proc­ esses in the granodiorite intrusion and confirm and expand the idea of the investigated quartz veins as formations of the post­tectonic hydrothermal stage [7]. REFERENCES 1. Grikurov, G. E. (1973). The geology of the Antarctic Peninsula. Мoscow: Nauka (in Russian). 2. Leat, P. T., Scarrow, J. H. & Millar, I. L. (1995). On the Antarctic Peninsula batholith. Geol. Mag., 132. Iss. 4, pp. 399­412. 3. Bakhmutov, V. G. (1998). Geological review of Argentine islands аrchipelago and adjoining territory of the Antarctic Peninsula. Bull. UАTs, Vyp. 2, pp. 77­84 (in Russian). 4. Bakhmutov, V. G., Gladkochub, D. P. & Shpyra, V. V. (2013). Age position, geodynamic specific and paleo­ magnetism of intrusive complexes of the western sea coast of the Antarctic Peninsula. Geophys. J., 35, No. 3, pp. 3­30 (in Russian). 5. Pankhurst, R. J., Riley, T. R., Fanning, C. M. & Kelley, S. P. (2000). Episodic silicik volcanism in Patagonia and the Antarctic Peninsula: Chronology of magmatism associated with the break­up of Gondwana. J. Petrol., 41, Iss. 5, pp. 605­625. 6. Elliot, D. H. (1964). The petrology of the Argentine islands. British Antarctic surv. Sci. reports, No. 41, pp. 1­31. 7. Аrtemenko, G. V., Bakhmutov, V. G., Samborskaia, I. А. & Каnunikova, L. I. (2011). Manifestations of the ore mineralization in the intrusive complex of the аrchipelago Argentine islands, West Antarctica. Mineral. J. (Ukraine), 33, No. 3, pp. 90­99 (in Russian). 8. Vovk, O. P. (2016). Crystal morphology of topaz and beryl of chamber pegmatites of Korosten’ pluton (north­ western part of the Ukrainian Shield). (Extended abstract of candidate thesis). M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kiev, Ukraine (in Ukrainian). 9. Каlyuzhnyi, V. А. (1982). Principles of knowledge on mineral­forming fluids. Кiev: Naukova dumka (in Russian). 10. Shaphranovskiy, I. I. (1974). Essays over the mineralogical crystallography. Leningrad: Nedra (in Russian). 11. Naumko, I., Zinchuk, I., Kalyuzhnyi, V. & Red’ko, L. (2005). Multiphase fluid inclusions with captive miner­ als: formation, preservation, interpretation and application with the purpose of forecasting and prospective estimating. In Mineralogical Museum (pp. 223­224). Saint­Petersburg: Department of Mineralogy SPbSU (in Russian). 12. Naumko, I. M. (2006). Fluid regime of mineral genesis of the rock­ore complexes of Ukraine (based on in­ clusions in minerals of typical parageneses). (Extended abstract of Doctor thesis). Institute of Geology and Geochemistry of Combustible Minerals of the NAS of Ukraine, Lviv, Ukraine (in Ukrainian). 13. Таkenouchi, S. & Кеnnedy, G. C. (1965). The solubility of carbon dioxide in NaCl solutions at high tempe­ ratures and pressures. Amer. J. Sci., 263. No. 5, pp. 445­454. 14. Balitskiy, V. S. (1978). Experimentic investigation of processes of the cut­glass formation. Мoscow: Nedra (in Russian). 15. Balitskiy, V. S. & Lisitsyna, Ie. Ie. (1981). Synthetic analogues and immitations of nature gem stones. Мoscow: Nedra (in Russian). Received 26.12.2017 80 ISSN 1025­6415. Dopov. Nac. akad. nauk Ukr. 2018. № 4 I.М. Naumko, G.V. Аrtemenko, V.G. Bakhmutov, O.P. Vovk, L.F. Теlepko, B.E. Sakhno І.М. Наумко 1, Г.В. Артеменко 2, В.Г. Бахмутов 3, О.П. Вовк 4, Л.Ф. Телепко 1, Б.Е. Сахно 1 1 Інститут геології і геохімії горючих копалин НАН України, Львів 2 Інститут геохімії, мінералогії та рудоутворення ім. М.П. Семененка НАН України, Київ 3 Інститут геофізики ім. С.І. Субботіна НАН України, Київ 4 Східноєвропейський національний університет ім. Лесі Українки, Луцьк Е­mail: igggk@mail.lviv.ua, regul@igmof.gov.ua, bakhm@igph.kiev.ua, geologygeochemistry@gmail.com УМОВИ ФОРМУВАННЯ КВАРЦУ В СІЧНИХ ЖИЛАХ У ГРАНОДІОРИТАХ АНДСЬКОГО ІНТРУЗИВНОГО КОМПЛЕКСУ ОСТРОВІВ БАРХАНИ (АРГЕНТИНСЬКІ ОСТРОВИ, ЗАХІДНА АНТАРКТИКА) Bстановлено, що ріст жильного кварцу в гранодіоритах андського інтрузивного комплексу (острови Бар­ хани, Західна Антарктида) здійснювався у кришталеносних жилах крутого падіння, в яких досягався пе­ репад температури, необхідний для розчинення масивного кварцу і кристалізації його прозорого різнови­ ду у вигляді прекрасно огранених кристалів у центральних частинах січних жил. Виявлена збагаченість флюїдного середовища кристалізації кварцу СО2, NaCl і КCl вказує на карбонатно­галоїдний склад квар­ цутворювальних флюїдів, що сприяло формуванню ювелірно і технологічно досконалих кристалів, мож­ ливо, з п’єзоелектричними властивостями, подібно до кристалів кварцу, як кришталеносних жил При­ полярного Уралу, так і синтезованих у лабораторних умовах. У підсумку обгрунтовано зв’язок кварцутво­ рювальних флюїдів та постмагматичних процесів у гранодіоритовій інтрузії і підтверджено та розвинено точку зору на вивчені кварцові жили як на утворення посттектонічної гідротермальної стадії. Ключові слова: кварц, кристаломорфологія, флюїдні включення, леткі компоненти, січнi жили, гранодіори­ ти, острови Бархани, Західна Антарктика. И.М. Наумко 1, Г.В. Артеменко 2, В.Г. Бахмутов 3, А.П. Вовк 4, Л.Ф. Телепко 1, Б.Э. Сахно 1 1Институт геологии и геохимии горючих ископаемых НАН Украины, Львов 2Институт геохимии, минералогии и рудообразования им. М.П. Семененко НАН Украины, Киев 3Институт геофизики им. С.И. Субботина НАН Украины, Киев 4Восточно­Европейский национальный университет им. Леси Украинки, Луцк Е­mail: igggk@mail.lviv.ua, regul@igmof.gov.ua, bakhm@igph.kiev.ua, geologygeochemistry@gmail.com УСЛОВИЯ ФОРМИРОВАНИЯ КВАРЦА В СЕКУЩИХ ЖИЛАХ В ГРАНОДИОРИТАХ АНДСКОГО ИНТРУЗИВНОГО КОМПЛЕКСА ОСТРОВОВ БАРХАНЫ (АРГЕНТИНСКИЕ ОСТРОВА, ЗАПАДНАЯ АНТАРКТИКА) Установлено, что рост жильного кварца в гранодиоритах андского интрузивного комплекса (острова Бар­ ханы, Западная Антарктида) осуществлялся в хрусталеносных жилах крутого падения, в которых дости­ гался перепад температуры, необходимый для растворения массивного кварца и кристаллизации его про­ зрачной разновидности в виде прекрасно ограненных кристаллов в центральных частях секущих жил. Выявленнoe обогащениe флюидной среды кристаллизации кварца СО2, NaCl и КCl указывает на кар­ бо нат но­галоидный состав кварцобразующих флюидов, что способствовало формированию ювелирно и технологически совершенных кристаллов, возможно, с пьезоэлектрическими свойствами, подобно кри­ сталлам кварца, как хрусталеносных жил Приполярного Урала, так и синтезированных в лабораторных условиях. В итоге обоснована связь кварцобразующих флюидов и постмагматических процессов в гра­ нодиоритовой интрузии и подтверждена и развита точка зрения на изученные кварцевые жилы как на об разования посттектонической гидротермальной стадии. Ключевые слова: кварц, кристалломорфология, флюидные включения, летучие компоненты, секущиe жилы, гранодиориты, острова Барханы, Западная Антарктика.