Linear and nonlinear instability of flow in channel occupied porous media
The paper investigates linear and nonlinear hydrodynamic instability of flow in channel ocuped porous medium. The effects of linear instability are considered using the method of linear perturbations. The nonlinear instability of the flow is considered using the renormalized expression for the coeff...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут технічної теплофізики НАН України
2017
|
Schriftenreihe: | Промышленная теплотехника |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/142360 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Linear and nonlinear instability of flow in channel occupied porous media / A.A. Avramenko, N.P. Dmitrenko, Y.Y. Kovetskaya // Промышленная теплотехника. — 2017. — Т. 39, № 3. — С. 40-46. — Бібліогр.: 21 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-142360 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1423602018-10-07T01:23:23Z Linear and nonlinear instability of flow in channel occupied porous media Avramenko, A.A. Dmitrenko, N.P. Kovetskaya, Y.Y. Тепло- и массообменные процессы The paper investigates linear and nonlinear hydrodynamic instability of flow in channel ocuped porous medium. The effects of linear instability are considered using the method of linear perturbations. The nonlinear instability of the flow is considered using the renormalized expression for the coefficient of the kinematic viscosity. В статті досліджена лінійна та нелінійна гідродинамічна нестійкість потоку в каналі, заповненому пористим середовищем. Ефекти лінійної нестійкості розглянуті, використовуючи метод лінійних збурень. Нелінійна нестійкість потоку розглянута, використовуючи ренормалізірований вираз для коефіцієнта кінематичної в'язкості. В статье исследована линейная и нелинейная гидродинамическая неустойчивость потока в канале, заполненном пористой средой. Эффекты линейной неустойчивости рассмотрены, используя метод линейных возмущений. Нелинейная неустойчивость потока рассмотрена, используя ренормализированное выражение для коэффициента кинематической вязкости. 2017 Article Linear and nonlinear instability of flow in channel occupied porous media / A.A. Avramenko, N.P. Dmitrenko, Y.Y. Kovetskaya // Промышленная теплотехника. — 2017. — Т. 39, № 3. — С. 40-46. — Бібліогр.: 21 назв. — рос. 0204-3602 DOI: https://doi.org/10.31472/ihe.3.2017.06 http://dspace.nbuv.gov.ua/handle/123456789/142360 532.536 en Промышленная теплотехника Інститут технічної теплофізики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Тепло- и массообменные процессы Тепло- и массообменные процессы |
spellingShingle |
Тепло- и массообменные процессы Тепло- и массообменные процессы Avramenko, A.A. Dmitrenko, N.P. Kovetskaya, Y.Y. Linear and nonlinear instability of flow in channel occupied porous media Промышленная теплотехника |
description |
The paper investigates linear and nonlinear hydrodynamic instability of flow in channel ocuped porous medium. The effects of linear instability are considered using the method of linear perturbations. The nonlinear instability of the flow is considered using the renormalized expression for the coefficient of the kinematic viscosity. |
format |
Article |
author |
Avramenko, A.A. Dmitrenko, N.P. Kovetskaya, Y.Y. |
author_facet |
Avramenko, A.A. Dmitrenko, N.P. Kovetskaya, Y.Y. |
author_sort |
Avramenko, A.A. |
title |
Linear and nonlinear instability of flow in channel occupied porous media |
title_short |
Linear and nonlinear instability of flow in channel occupied porous media |
title_full |
Linear and nonlinear instability of flow in channel occupied porous media |
title_fullStr |
Linear and nonlinear instability of flow in channel occupied porous media |
title_full_unstemmed |
Linear and nonlinear instability of flow in channel occupied porous media |
title_sort |
linear and nonlinear instability of flow in channel occupied porous media |
publisher |
Інститут технічної теплофізики НАН України |
publishDate |
2017 |
topic_facet |
Тепло- и массообменные процессы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/142360 |
citation_txt |
Linear and nonlinear instability of flow in channel occupied porous media / A.A. Avramenko, N.P. Dmitrenko, Y.Y. Kovetskaya // Промышленная теплотехника. — 2017. — Т. 39, № 3. — С. 40-46. — Бібліогр.: 21 назв. — рос. |
series |
Промышленная теплотехника |
work_keys_str_mv |
AT avramenkoaa linearandnonlinearinstabilityofflowinchanneloccupiedporousmedia AT dmitrenkonp linearandnonlinearinstabilityofflowinchanneloccupiedporousmedia AT kovetskayayy linearandnonlinearinstabilityofflowinchanneloccupiedporousmedia |
first_indexed |
2025-07-10T14:50:37Z |
last_indexed |
2025-07-10T14:50:37Z |
_version_ |
1837271918761213952 |
fulltext |
ISSN 0204-3602. Пром. теплотехника, 2017, т. 39, №340
ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ
UDC 532.536
LINEAR AND NONLINEAR INSTABILITY OF FLOW IN CHANNEL
OCCUPIED POROUS MEDIA
Avramenko A.A., corresponding member of NASU, Dmitrenko N.P., Kovetskaya Y.Y.
Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine,
st. Zhelyabova, 2a, Kyiv, 03680 Ukraine
В статті досліджена лінійна та
нелінійна гідродинамічна нестійкість
потоку в каналі, заповненому пори-
стим середовищем. Ефекти лінійної
нестійкості розглянуті, використовую-
чи метод лінійних збурень. Нелінійна
нестійкість потоку розглянута, викори-
стовуючи ренормалізірований вираз для
коефіцієнта кінематичної в'язкості.
В статье исследована линейная
и нелинейная гидродинамическая не-
устойчивость потока в канале, запол-
ненном пористой средой. Эффекты
линейной неустойчивости рассмотре-
ны, используя метод линейных возму-
щений. Нелинейная неустойчивость
потока рассмотрена, используя ренор-
мализированное выражение для коэф-
фициента кинематической вязкости.
The paper investigates linear and
nonlinear hydrodynamic instability of flow
in channel ocuped porous medium. The
effects of linear instability are considered
using the method of linear perturbations.
The nonlinear instability of the flow
is considered using the renormalized
expression for the coefficient of the
kinematic viscosity.
cF – Forchheimer′s coefficient;
d – dimensionality of space;
D – constant;
E – spectrum of turbulent energy;
f − solenoidal force;
F – Fourier transform of solenoidal force;
K – permeability;
p – pressure;
P – pressure transform;
s – direction cosines of velocity vector;
S – Fourier transform of the direction cosines of velocity
vector;
t – time;
u, υ, w – velocity component;
x, y, z – cartesian coordinates;
U – Fourier transform of velocity;
V – velocity vector;
β, κ – wave numbers;
ε – dissipation rate;
μ – effective coefficient of dynamic viscosity;
ν – effective coefficient kinematic viscosity ;
ρ – density;
τ – positive parameter;
φ – porosity;
ω – frequency.
Indices:
c, h, k, l, m, n, r, s, ο – projections on coordinates;
е – effective parameter;
t – turbulent parameter;
0 – start point.
Complexes:
2h
KDa – the Darcy criterion;
2/1Da M ;
huRe – Reynolds criterion;
J
huc
f
F
2/3 .
References 21, figures 2.
Key words: renormalized analysis, mathematical model, porosity, instability, turbulence.
Introduction
The investigation into the physics of flow in a porous
medium has provided the basis for many theoretical and
practical studies in various fields such as the mechanics
of grounds, hydrology of ground water, oil engineering,
industrial filtration, powder metallurgy, atomic power
engineering, etc. For some time now the processes of
turbulent flow in a porous medium have been studied
closely and intensively. In [1, 2], the derivation of the k–ε
model equations is set out for modeling the processes of
macroscopic turbulence in porous media. The results of
numerical simulation obtained with the use of the model
proposed in [1, 2] are presented in [3]. In [4–7], various aspects
of macroscopic modeling of turbulence in homogeneous
porous media are considered. Using the procedure of
averaging over the time, the authors of [4] obtained an
equation for the kinetic energy of turbulence. Experimental
investigation of the chaotic behavior of flow through porous
media in time is described in [8]. In that investigation, a
porous medium was considered as a pencil of narrow
tubes. In [9], Barr proposed a technique for determining the
origination of turbulence in porous media and calculating
the effective permeability. A one-equation model for
calculating two-dimensional turbulent flow through porous
media was suggested in [10]. The model is based on the
ISSN 0204-3602. Пром. теплотехника, 2017, т. 39, №3 41
ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ
assumption that the turbulent energy generation term in the
turbulent equation for kinetic energy is proportional to the
cubed velocity. Semiempirical modeling of flow and of heat
transfer in porous media is considered in [11]. Calculations
at a low level of turbulence that may occur in a porous layer
heated from below are presented in [12]. Work [13] contains
the results of direct numerical simulation of turbulent flow
in a pipe with porous and liquid media. In [14] the authors
investigated the influence of turbulence effects on flow
through a pseudoporous medium by numerically solving
the Reynolds-averaged Navier-Stokes equations with the
use of the k–ε model of turbulence. The two-dimensional
porous medium represented a random arrangement of solid
particles.
As it is known, flow in a porous medium can have a
laminar, transient, and turbulent character depending on
the Reynolds number and the porosity parameters of the
medium. For adequately describes the above-mentioned
regimes it is necessary to know the conditions under which
flow in a porous medium loses its stability. In [15], the linear
instability of a laminar flow in a plane channel filled with a
porous medium was studied. The dependence of the critical
Reynolds number on the medium porosity and permeability
was analyzed numerically. The hydrodynamic instability of
flow in a hyperporous medium was considered in [16]. The
dependence of the critical Reynolds number on the medium
porosity and Knudsen number was analyzed.
The purpose of this paper is determinating the
parameters of the linear and nonlinear hydrodynamic
instability of flow in occupied porous medium channel (fig.
1.) that allow to optimize the choice of various geometric
parameters of the media for their realization in technological
processes.
The theory of renormalized groups (RNG), used in the
present article, has been developed in quantum physics.
This theory was applied to studying turbulent flows in [18].
Using the RNG theory, Yakhot and Orzag [19] developed a
closed model of turbulence.
The renormalization group method was also applied to
studying turbulent flows in a porous medium in [20]. In the
case of a porous medium, this approach made it possible
to reveal the physical essence of the effect exerted by the
Forchheimer component on the behavior of flow turbulence
not resorting to empirical information.
Fig. 1. Calculating domain scheme.
Linaer instability
To describe the porous medium, one can use the Darcy-
Brickman-Forchaymer model [17]. This model was used
as the basis for studying the hydrodynamic instability
in a macroporous medium using a two-dimensional
approach [15]. The present study uses a three-dimensional
approximation.
The flow dynamics in a porous medium is described by
a system of modified Navier-Stokes differential equations
and the continuity equation.
uV
K
cu
K
u
x
p
z
uw
y
u
x
uu
t
u F
ft
221
,
V
K
c
Ky
p
z
w
yx
u
t
F
ft
221
,
wV
K
cw
K
w
y
p
z
ww
y
w
x
wu
t
w F
ft
221
,
.0
z
w
yx
u
(1,а)
(1,в)
(1,с)
(1,d)
This system of equations includes terms that take into
account the hydraulic resistance caused by the porosity of
the medium. The first one describes the Darcy line resistance
and the second describes nonlinear resistance of Forchimer.
To determine the criteria of hydrodynamic instability
one can use the method of linear perturbations. According
to this method, the flow parameters are represented in the
following form:
zyxtuyUu ,,,ˆ , zyxt ,,, ,
zyxtww ,,, , zyxtpxPp ,,,ˆ , (2)
where zyxtuyUu ,,,ˆ , zyxt ,,, ,
zyxtww ,,, , zyxtpxPp ,,,ˆ ,
,
zyxtuyUu ,,,ˆ , zyxt ,,, ,
zyxtww ,,, , zyxtpxPp ,,,ˆ , are the parameters of the basic unperturbed
flow. u', υ', w', p' – perturbation parameters. The basic
unperturbed flow is determined by the quantities:
yUu ˆ , 0 w , xPp ˆ .
We substitute expressions (2) in the system of basic
differential equations (1), discard the quadratic terms relative
to the components of the velocity of the disturbing motion.
The perturbed quantities u', υ', w', p' can be represented as
3D waves in the form of such functions:
ISSN 0204-3602. Пром. теплотехника, 2017, т. 39, №342
ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ
(3,1) tzxiyuu exp1 ,
tzxiy exp1 ,
tzxiyww exp1 ,
tzxiypp exp1 ,
(3,2)
(3,3)
(3,4)
where β − is a complex quantity and can be represented in
such a form β = βr + iβi, where βr is the circular frequency of
the individual oscillation, βi is the growth coefficient, α and
γ are the wave numbers, u1, υ1, w1, p1 are the amplitudes. In
the course of mathematical transformations, amplitudes u1,
w1, p1 were eliminated, and an equation of the fourth order
was obtained:
,0~Re
~
~
~
~Re~Re
~2~~
~
~
~~
~Re
~
~Re
~~~~
~
~
22
2
224
2
1
1
MUiMkci
UiMUkiMkkkciM
(4)
where the prime denotes differentiation with respect to y~
( y~ = y / h). In equation (4) k2 = α2 + k2, h is channel half
widht, u – velocity in the center of the channel ᾶ = αh,
khk ~ , uUU /ˆ~ ,. uc /~
khk ~ , uUU /ˆ~ ,. uc /~
.
In the case when M = Λ = 0 equation (4) is transformed
into a classical equation for calculating the instability of a
pure liquid.
In order to determine the criterion of hydrodynamic
instability, it is necessary to study equation (4) for
eigenvalues. The boundary conditions have the following
form:
1~ y , 0~ ,
1~ y , 0~ .
(5,a)
(5,b)
Further, critical stability parameters were calculated for
different sets of values of the parameters M and Λ. The
results of calculations are presented in fig. 2.
Fig. 2. Dependence of the critical Reynolds number on the parameters M and Λ.
In case M = Λ = 0 the critical parametr of stability is
Recr= 5725, which agrees with the data of [19]. It can be
seen from the figure if the parameters M and Λ increase, the
value of Recr increases as weel. This is due to the fact that as
the parameters M increase and the velocity profile becomes
more filled and this, in accordance with the second Rayleigh
theorem on the stability of the flow, leads to the stabilization
of the flow and to an increase in the value of the critical
Reynolds number.
Further we consider nonlinear effects of instability which
can occur after linear regime of instability. The nonlinear
effects cannot be described by the Orr–Sommerfeld linear
equations. To carry out an analysis of the indicated stage of
instability in a porous medium, we may avail ourselves of
dependence for the turbulent viscosity. In order to receive
equation for turbulent viscosity we use RNG theory.
Renormalized group transformation
For it instability analysis one can use RNG approach.
As is shown in [1], the equation of flow motion in a
porous medium involves a term that accounts for the linear
hydrodynamic resistance and is described by the Darcy
law, terms that account for the Forchheimer hydrodynamic
resistance, and Brinkman′s correction. We rewrite equation
(1) in this form
n
m
mn
n
nn uH
x
uu
x
pfuJ
Kt
V
ρ
1νφν 2
00 ,
0
m
m
x
u ,
(6,a)
(6,b)
where
K
cH F2 , J = μe/μ is a viscosity ratio and V is the
velocity vector. The projection of the velocity vector on the
coordinate axis is described by the expression
nnn suu VVV
cos
, (7)
where sn is the direction cosine.
We apply the Fourier transformation to the velocity, pressure,
and force parameters in Eq. (6):
c
tiiddu n
d
dn xκexp,κUκ
2
1
1
,
c
tiiddp d
d xκexp,κPκ
2
1
1
,
c
tiidduu nm
d
dmn xκexp,κWκ
2
1
1
,
c
tiiFddf n
d
dn xexp,
2
1
1
,
c
tiiSdds n
d
dn xexp,
2
1
1
,
c n
tiiSddus us
d
dmn xκexp,
2
1
21
2 ,
(8,a)
(8,b)
(8,c)
ISSN 0204-3602. Пром. теплотехника, 2017, т. 39, №3 43
ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ
c
tiiddu n
d
dn xκexp,κUκ
2
1
1
,
c
tiiddp d
d xκexp,κPκ
2
1
1
,
c
tiidduu nm
d
dmn xκexp,κWκ
2
1
1
,
c
tiiFddf n
d
dn xexp,
2
1
1
,
c
tiiSdds n
d
dn xexp,
2
1
1
,
c n
tiiSddus us
d
dmn xκexp,
2
1
21
2 ,
(8,d)
(8,e)
(8,f)
where x – vector of wave number, x – vector of point
coordinate.
Substitution eqs. (8) into Eqs. (6) gives
2
1
0 usnmmnnn
n
HWWiPiFUG
,
where
1
2
0
0
0
J
K
iG
(9)
.
Then we apply renormalization procedure to eq. (9).
The procedure of renormalization analysis consists of the
subdivision of the velocity and force fields into fast and
slow modes [21]. As a result, we obtain an expression for
the fast and slow modes. Next, we exclude the fast modes
from equation for fast modes. Using the averaging rules [21]
we integrate the resalting expression. After that we have
*ε4
2
0
010
122
0
~
~~
2
~
8~Δ
d
mtlts
dsml
MMG
GdMDJ ·
· (10)
and
~
2
~~~S
2
~~~~
8
1*ε41
2
00
0
2
0
dUdMMGG
DHMN
d
nh
dd
mrnh
rml
. .(11)
Expression (11) describes the renormalized component
of the Forchheimer nonlinear resistance. The process of
renormalization continues up to a fixed point. As this fixed
point is approached, we get
,~~~~~
2
~~
~~~
2
~~~~
22
10
1
rrhdnh
lmdnmlnn
UUSddHM
UUdMFUG
where
1
0
20 Δ~
~
J
KiU
NiG
n
.
(12)
(13)
The next step is the determination of the turbulent
coefficient of kinematic viscosity with account for the
porosity and for Forchheimer′s correction. To obtain a
differential equation that would describe the effective
viscosity, we compute integral (10) over the entire spectrum
of frequencies.
As a result, we get the renormalized viscosity equation
in form:
*ε4
2
0
010
122
0
~
~~
2
~
8~Δ
d
mtlts
dsml
MMG
GdMDJ
2 2
3 40 0 0 0
2 ε* 2 ε* 2
0 0
exp 2 ε * 1exp ε * 1
Δ
ε * 2 ε */
d d
c c
D DA J B J
K
,
where
21 3, .
2 2 22 2
d d
d dd d
S d S d dA B
d d d
(14)
2 2
3 40 0 0 0
2 ε* 2 ε* 2
0 0
exp 2 ε * 1exp ε * 1
Δ
ε * 2 ε */
d d
c c
D DA J B J
K
,
where
21 3, .
2 2 22 2
d d
d dd d
S d S d dA B
d d d
(15)
In order to obtain a differential equation for the effective
viscosity, we differentiate (14) with respect to τ for τ → 0:
2 2
3 0 0
2 ε* 2
2 31
1d
c c
d D d dA J
d d dJK
. (16)
The subscript "0" is omitted, since the renormalization
procedure takes place when v(κc) → v(κc').
With account for the boundary condition v(∞) = 0,
integration of (16) leads to the equation
1/32
0
3 ε* 2
3 1 2 3
ε * 1(2 ε*)
d
c c
A D d d
d dJ JK
, (17)
which is an expression for the renormalized effective
viscosity with account for the porosity of the medium.
Next, we exclude the wave number from (17). To do
this, we calculate the turbulence energy spectrum from
the formula of [20]. Substituting the expression for the
correlation function of effective random forces and taking
into account the expression for the effective viscosity with
account for the porosity of the medium (17), we obtain
1/32ε*1/3 212/3 30 2
1 ε * 2 ε * 31 .
2 3 1(2 ε*)2
d
d
d
d S d dE J D
A d dJK
∙
∙ (18)
Just as in the expression for turbulent viscosity, we
replace κc by κ in eq. (18). In the case of ε* = 4 and K → ∞,
a porous medium is absent, and Eq. (18) is transformed into
the Kolmogorov law.
Then from eq. (17) one can get
3
1
2
3
*4
2
2
3
12
3
*
0
)2(
1
3,
3
4,
3
1,
3
1F)1(27
)1(3(161
K
k
J
dd
dd
JK
ddC
dd
c
K
tt , (19)
where νt0 is defined in [20]. As it is seen from Eq. (19), at
certain values of the parameters of flow and of the properties
of a porous medium, the turbulent viscosity may degenerate.
This problem will be considered below.
Nonlinear isntability
In order to carry out a non-linear analysis of the instability
in porous medium we may use equation (17) for the
renormalized turbulent viscosity. It follows from (17) that
this viscosity is equal to zero, i.e., all nonlinear perturbations
attenuate provided that
2 2
3 40 0 0 0
2 ε* 2 ε* 2
0 0
exp 2 ε * 1exp ε * 1
Δ
ε * 2 ε */
d d
c c
D DA J B J
K
,
where
21 3, .
2 2 22 2
d d
d dd d
S d S d dA B
d d d
1/32ε*1/3 212/3 30 2
1 ε * 2 ε * 31 .
2 3 1(2 ε*)2
d
d
d
d S d dE J D
A d dJK
ISSN 0204-3602. Пром. теплотехника, 2017, т. 39, №344
ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ
1
3
*)ε2(
*ε2 2
2
dd
dd
J
KK
c
cr . (20)
Eliminating the wave number from (20) and using a
Gaussian filter
c
L
2
(21)
we obtain the instability criterion in the form of the Darcy
number:
1
3
*)ε2(2
*εDaDa
2
2
dd
dd
Jcr ,
2Da
std
K
,
(22)
(23)
where the size dst is the average size of the particle or the
diameter of the filter that forms porous medium. This size
can be used as Gaussian filter.
If for the permeability we use the Kozeny relation [17]
)1(180 2
32
stdK (24)
and the expression for the viscosity ratio
1J , (25)
we obtain the following equation for the critical value of the
porosity:
)3(120
124072011120360
2
22
dd
dddddd
cr . (26)
For three-dimensional flow Eq. (26) yields
72,03 D
cr ,
775,02 D
cr .
(27)
for two-dimensional flow we have
(28)
72,03 D
cr ,
775,02 D
cr .
A comparison of (27) and (28) shows that the three-
dimensional flow is less stable in comparison with the two-
dimensional one. This conclusion is directly opposite to the
Squire stability theorem for the linear stage of instability
development, in porous media too.
Conclusions
Using the method of the linear perturbations, equation
for disturbing amplitudes of motion is obtained. This
equation makes it possible to analyze the influence of the
parameters M and Λ on the linear instability of the flow in
a porous medium. With the help of the RNG approach, an
expression for the kinematic viscosity was obtained. The
resulting expression was used to determine the criterion
of nonlinear instability. The results of instability analysis
make possible to optimize the choice of various (geometric)
characteristics of the porous medium for the realization of
flows in various technological processes.
1. Antohe, B.V., Lage, J.L. A general two-equation
macroscopic model for incompressible flow in porous
media. // International Journal of Heat and Mass Transfer. –
1997. – № 40.– Р. 3013–3024.
2. Getachew D., Minkowycz W.J., Lage J.L. A modified
form of the model for turbulent flows of an incompressible
fluid in porous media // International Journal of Heat and
Mass Transfer. – 2000. – №43. – Р. 2909–2915.
3. Chung K.Y., Lee K.S., Kim W.S. Modified
macroscopic turbulence modeling for the tube with channel
geometry in porous media // Numerical Heat Transfer A.–
2003. – № 43.– Р. 659– 668.
4. de Lemos M.J.S., Pedras M.H.J. Recent
mathematical models for turbulent flow in saturated rigid
porous media. // ASME J Fluids Engineering. – 2001. –
Vol.123(4). – Р. 935–940.
5. de Lemos M.J.S., Pedras M.H.J. On the
mathematical description and simulation of turbulent flow
in a porous medium formed by an array of elliptic rods.
// ASME J Fluids Engineering. – 2001a. – Vol.123(4). –
P. 941–947.
6. de Lemos M.J.S., Pedras M.H.J. Macroscopic
turbulence modeling for incompressible flow through
undeformable porous media. // International Journal of Heat
and Mass Transfer. – 2001b.– №. 44.– P. 1081–1093.
7. de Lemos M.J.S., Pedras M.H.J. Simulation of
turbulent flow in porous media using a spatially periodic
array and a low Re two-equation closure. // Numerical Heat
Transfer. – 2001c. – Part A. – Vol.39. – P. 35–59.
8. Masuoka T., Takatsu Y., Inoue T. Chaotic behavior
and transition to turbulence in porous media. // Microscale
Thermophysical Engineering. – 2002. – Vol.6. – P. 347–357.
9. Barr D.W. Turbulent flow through porous media. //
Ground Water. − 2001. – Vol.39. – P. 646–650.
10. Alvarez G., Bournet P.E., Flick D. Two-dimensional
simulation of turbulent flow and heat transfer through
stacked spheres. // International Journal of Heat and Mass
Transfer. − 2003. – №.46. – P. 2459–2469.
11. Flick D., Leslous A., Alvarez G. Semi-empirical
modeling of turbulent fluid flow and heat transfer in porous
media. // International Journal of Refrigeration. – 2003. −
Vol.26. – P. 349–359.
12. Vadasz P. Small and moderate Prandtl number
convection in a porous layer heated from below. //
International Journal of Energy Research. – 2003. − Vol.27. –
P. 941–960.
13. Hahn S., Je J., Choi H. Direct numerical simulation
of turbulent flow with permeable walls. // J Fluid Mech. –
2002. − Vol.450. – P. 259–285.
14. Macedo H.H., Costa U.M.S. Almeida M.P. Turbulent
effects on fluid flow through disordered porous media //
Physica A. – 2001. − Vol.299. – P. 371–377.
15. Avramenko A.A., Kuznetsov A.V., Basok B.I., Blinov
D.G. Investigation of stability of a laminar flow in parallel-
plate channel filled with a fluid saturated porous medium //
Physics of flow. − 2005. − № 17. – P. 1–6.
16. Avramenko A.A., Kuznetsov A.V., Nield D.A.
Instability of slip-flow in a channel occupied by a hyper-
porous medium // Journal of Porous Media. – 2007. – Vol.
10. – P. 435–442.
17. Nield D. A. The stability of flow in channel or duct
occupied by a porous medium // J. Heat Mass Transfer.−
2003.− №. 46.− P. 4351–4354.
ISSN 0204-3602. Пром. теплотехника, 2017, т. 39, №3 45
ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ
18. Fournier J.D., Frisch U. Remarks on the
renormalization group in statistical fluid dynamics // Phys.
Rev. А. – 1983. – Vol. 28, № 2. – P. 1000 – 1002.
19. Yakhot V, Orszag S.A. Renormalization group
analysis of turbulence. I. Basic theory // J. Sci. Соmp.–
1986.– 1, № 1.– Р. 3–51.
20. Avramenko A.A., Kuznetsov A.V. Renormalization
Group Model of Lage-Scale Turbulence in Porous Media //
Transrort in Porous Media. − 2006. − № 63. – P. 175−193.
21. Avramenko A.A., Basok B.I., Dmitrenko N.P.
Renormalization group analysis of turbulence. – Kyiv:
Express, 2013. 298 p.
ISSN 0204-3602. Пром. теплотехника, 2017, т. 39, №346
ТЕПЛО- И МАССООБМЕННЫЕ ПРОЦЕССЫ
ЛИНЕЙНАЯ И НЕЛИНЕЙНАЯ НЕУСТОЙЧИ-
ВОСТЬ ПОТОКА В КАНАЛЕ,
ЗАПОЛНЕННОМ ПОРИСТОЙ СРЕДОЙ
Авраменко А.А., чл.-кор. НАН Украины,
Дмитренко Н.П., канд. техн. наук, Ковецкая Ю.Ю.
Институт технической теплофизики НАН Украины.
03057, г. Киев, ул. Желябова, 2а
Ключевые слова: ренормализационный анализ, мате-
матическая модель, пористость, неустойчивость, турбу-
лентность
Библ. 21, рис. 2.
В пористой среде поток может носить ламинарный, пе-
реходной или турбулентный характер. И при этом важ-
но знать параметры, при которых один режим течения
переходит в другой. В настоящей статье исследована
линейная и нелинейная гидродинамическая неустойчи-
вость потока в канале, заполненном пористой средой.
Для проведения линейного анализа неустойчивости ис-
пользовалась модель Дарси-Бринкмана-Форхаймера в
трехмерном приближении. Полученные данные обоб-
щены зависимостью . Нелинейный анализ неустойчи-
вости был проведен, используя ренормализированное
выражение для коэффициента кинематической вязко-
сти. В результате получен критерий гидродинамической
неустойчивости.
Результаты проведенного исследования позволяют оп-
тимизировать выбор характеристик (геометрических)
пористой среды для реализации ее в технологических
процессах.
ЛИТЕРАТУРА
1. B. V. Antohe and J. L. Lage. A general two-equation
macroscopic model for incompressible flow in porous
media, Int. J. Heat Mass Transf., 40, No. 13, 3013–3024
(1997).
2. D. Getachew, W. J. Minkowycz, and J. L. Lage. A
modified form of the k–ε model for turbulent flows of an
incompressible fluid in porous media, Int. J. Heat Mass
Transf., 43, No. 16, 2909–2915 (2000).
3. K. Y. Chung, K. S. Lee, and W. S. Kim. Modified
macroscopic turbulence modeling for the tube with channel
geometry in porous media, Numer. Heat Transf., Part A, 43,
No. 6, 659–668 (2003).
4. M. J. S. de Lemos and M. H. J. Pedras. Recent
mathematical models for turbulent flow in saturated rigid
porous media, ASME J. Fluids Eng., 123, No. 4, 935–940
(2001).
5. M. J. S. de Lemos and M. H. J. Pedras. On the
mathematical description and simulation of turbulent flow
in a porous medium formed by an array of elliptic rods,
ASME J. Fluids Eng., 123, No. 4, 941–947 (2001).
6. M. J. S. de Lemos and M. H. J. Pedras. Macroscopic
turbulence modeling for incompressible flow through
undeformable porous media, Int. J. Heat Mass Transf., 44,
No. 6, 1081–1093 (2001).
7. M. J. S. de Lemos and M. H. J. Pedras. Simulation
of turbulent flow in porous media using a spatially periodic
array and a low Re two-equation closure, Numer. Heat
Transf., Part A, 39, No. 1, 35–59 (2001).
8. T. Masuoka, Y. Takatsu, and T. Inoue. Chaotic
behavior and transition to turbulence in porous media,
Microscale Thermophys. Eng., 6, No. 4, 347–357 (2002).
9. D. W. Barr. Turbulent flow through porous media,
Ground Water, 39, No. 5, 646–650 (2001).
10. G. Alvarez, P. E. Bournet, and D. Flick. Two-
dimensional simulation of turbulent flow and heat transfer
through stacked spheres, Int. J. Heat Mass Transf., 46, No.
13, 2459–2469 (2003).
11. D. Flick, A. Leslous, and G. Alvarez. Semi-empirical
modeling of turbulent fluid flow and heat transfer in porous
media, Int. J. Refrig., 26, No. 3, 349–359 (2003).
12. P. Vadasz. Small and moderate Prandtl number
convection in a porous layer heated from below, Int. J.
Energy Res., 27, No. 10, 941–960 (2003).
13. S. Hahn, J. Je, and H. Choi. Direct numerical
simulation of turbulent flow with permeable walls, J. Fluid
Mech., 450, 259–285 (2002).
14. H. H. Macedo, U. M. S. Costa, and M. P. Almeida.
Turbulent effects on fluid flow through disordered porous
media, Physica A, 299, No. 3, 371–377 (2001).
15. A. A. Avramenko, A. V. Kuznetsov, B. I. Basok, and
D. G. Blinov. Investigation of stability of a laminar flow in
parallel-plate channel filled with a fluid saturated porous
medium. Phys. Fluids, 17, No. 9, 94–103 (2005).
16. A. A. Avramenko, A. V. Kuznetsov, and D. A. Nield.
Instability of slip-flow in a channel occupied by a hyper-
porous medium, J. Porous Media, 10, No. 5, 435–442
(2007).
17. Nield D. A, Bejan A. Convection in porous media,
2nd ed. New York: Springer, 1999. 633 p.
18. Fournier J. D., Frisch U. Remarks on the
renormalization group in statistical fluid dynamics. Phys.
Rev. А. 1983. Vol. 28, № 2. P. 1000 – 1002.
19. Yakhot V, Orszag S.A. Renormalization group
analysis of turbulence. I. Basic theory J. Sci. Соmp. 1986.
Vol. 1, № 1. Р. 3 – 51.
20. A.A. Avramenko and A.V. Kuznetsov.
Renormalization group model of large-scale turbulence in
porous media, Transp. Porous Media, 63, No. 1, 175−193
(2006).
21. Avramenko A.A., Basok B.I., Dmitrenko N.P.
Renormalization group analysis of turbulence. – Kyiv:
Express, 2013. 298 p.
Получено 06.04.2017
Received 06.04.2017
|