Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings
The effects of N₂ partial pressure in the unbalanced magnetron sputtering process on the microstructure, hardness, and thermal stability of the CrZrSiN nanocomposite coating were investigated. A
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2016
|
Schriftenreihe: | Сверхтвердые материалы |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/143854 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings / K.S. Kim, H.K. Kim, J.H. La, K.B. Kim, S.Y. Lee // Сверхтвердые материалы. — 2016. — № 4. — С. 47-56. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-143854 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1438542018-11-15T01:23:59Z Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings Kim, K.S. Kim, H.K. La, J.H. Kim, K.B. Lee, S.Y. Получение, структура, свойства The effects of N₂ partial pressure in the unbalanced magnetron sputtering process on the microstructure, hardness, and thermal stability of the CrZrSiN nanocomposite coating were investigated. A Досліджено вплив парціального тиску N₂ в процесі незбалансованого магнетронного розпилення на мікроструктуру, твердість і термостабільність нанокомпозитного покриття CrZrSiN. Исследовано влияние парциального давления N₂ в процессе несбалансированного магнетронного распыления на микроструктуру, твердость и термостабильность нанокомпозитного покрытия CrZrSiN. This research was supported by a grant from the Advanced Technology Center (ATC) Program funded by the Ministry of Trade, Industry& Energy of Korea. 2016 Article Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings / K.S. Kim, H.K. Kim, J.H. La, K.B. Kim, S.Y. Lee // Сверхтвердые материалы. — 2016. — № 4. — С. 47-56. — Бібліогр.: 24 назв. — англ. 0203-3119 http://dspace.nbuv.gov.ua/handle/123456789/143854 621.793.002.3-419:533.273 en Сверхтвердые материалы Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Получение, структура, свойства Получение, структура, свойства |
spellingShingle |
Получение, структура, свойства Получение, структура, свойства Kim, K.S. Kim, H.K. La, J.H. Kim, K.B. Lee, S.Y. Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings Сверхтвердые материалы |
description |
The effects of N₂ partial pressure in the unbalanced magnetron sputtering process on the microstructure, hardness, and thermal stability of the CrZrSiN nanocomposite coating were investigated. A |
format |
Article |
author |
Kim, K.S. Kim, H.K. La, J.H. Kim, K.B. Lee, S.Y. |
author_facet |
Kim, K.S. Kim, H.K. La, J.H. Kim, K.B. Lee, S.Y. |
author_sort |
Kim, K.S. |
title |
Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings |
title_short |
Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings |
title_full |
Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings |
title_fullStr |
Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings |
title_full_unstemmed |
Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings |
title_sort |
influence of n₂ partial pressure on the microstructure, hardness, and thermal stability of crzrsin nanocomposite coatings |
publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
publishDate |
2016 |
topic_facet |
Получение, структура, свойства |
url |
http://dspace.nbuv.gov.ua/handle/123456789/143854 |
citation_txt |
Influence of N₂ partial pressure on the microstructure, hardness, and thermal stability of CrZrSiN nanocomposite coatings / K.S. Kim, H.K. Kim, J.H. La, K.B. Kim, S.Y. Lee // Сверхтвердые материалы. — 2016. — № 4. — С. 47-56. — Бібліогр.: 24 назв. — англ. |
series |
Сверхтвердые материалы |
work_keys_str_mv |
AT kimks influenceofn2partialpressureonthemicrostructurehardnessandthermalstabilityofcrzrsinnanocompositecoatings AT kimhk influenceofn2partialpressureonthemicrostructurehardnessandthermalstabilityofcrzrsinnanocompositecoatings AT lajh influenceofn2partialpressureonthemicrostructurehardnessandthermalstabilityofcrzrsinnanocompositecoatings AT kimkb influenceofn2partialpressureonthemicrostructurehardnessandthermalstabilityofcrzrsinnanocompositecoatings AT leesy influenceofn2partialpressureonthemicrostructurehardnessandthermalstabilityofcrzrsinnanocompositecoatings |
first_indexed |
2025-07-10T18:08:09Z |
last_indexed |
2025-07-10T18:08:09Z |
_version_ |
1837284484204986368 |
fulltext |
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 4 47
621.793.002.3-419:533.273
K. S. Kim, H. K. Kim, J. H. La, K. B. Kim, S. Y. Lee*
Center for Surface Technology and Applications,
Department of Materials Engineering, Korea Aerospace University,
GoYang-si, Gyeonggi-do, South Korea
*sylee@kau.ac.kr
Influence of N2 partial pressure
on the microstructure, hardness, and thermal
stability of CrZrSiN nanocomposite coatings
The effects of N2 partial pressure in the unbalanced magnetron
sputtering process on the microstructure, hardness, and thermal stability of the
CrZrSiN nanocomposite coating were investigated. A typical nanocomposite structure,
composed of a crystalline phase and an amorphous phase was obtained and the
distribution of these phases changed with increasing N2 partial pressure. The N1s
spectra revealed the presence of two-peak characteristic of nitrogen in the CrZrN and
SiNx phases, and the ratio of the peak’s SiNx to CrZrN intensity increased with
increasing N2 partial pressure, indicating an increase in the amorphous phase in the
nanocomposite microstructure. As N2 partial pressure increased, the CrZrSiN coating
hardness decreased from 38 to 30 GPa due to the increasing amount of the SiNx
amorphous phase. After the thermal stability test, the hardness values of the CrZrSiN
coatings were maintained at approximately 30 GPa up to 800 °C, but the hardness
decreased rapidly to 18 GPa after annealing at 900 °C. This drastic change of hard-
ness over 900 °C was due to the formation of a Cr2O3 phase in the CrZrSiN coating.
Keywords: coating, nanocomposite, microstructure, amorphous
phase.
INTRODUCTION
Over the last decade, hard coatings have been applied extensively
to various types of cutting tools to improve their lifetime and performance, enhance
productivity, and enable specific engineering applications. However, the
performance of coatings could degrade seriously in high-temperature environment.
Recently, significant developments have been made in the field of hard coatings in
order to overcome the limitations of conventional nitride coatings. In particular,
numerous scientific and technologic efforts have been devoted to research on
nanocomposite coatings. Past studies on these Si-containing nitrides [1–5] reported
that the incorporation of Si resulted in a refinement of the grain size of the
crystalline MeN phase (Me = Metal) and the formation of a SiNx phase. This
consequently led to the formation of two phases in nanocomposite structures: a
nanocrystalline and an amorphous phase. At the nanocrystalline phase, which has
very small grain sizes, any dislocation movement that arises is trapped at the grain
boundaries. Also, the amorphous layer plays an important role as a diffusion
barrier that inhibits the diffusion of the oxygen ions [6]. For these reasons,
nanocomposite coatings are able to simultaneously obtain greater hardness and
enhanced thermal stability. To optimize the excellent performance potential of
© K. S. KIM, H. K. KIM, J. H. LA, K. B. KIM, S. Y. LEE, 2016
www.ism.kiev.ua/stm 48
nanocomposite coatings, it is important to control the microstructure in the
nanocomposite coating composed of the crystalline phase and the amorphous
phase.
In previous works, Si content, high temperatures and substrate bias voltage
were used to change the nanocomposite structure in the coating. Considerable
research has shown that the nanocomposite structure is affected by the Si content in
the coatings [7, 8]. Veprek [9] suggested that high temperature was necessary to
achieve a Si-containing nanocomposite structure. Zhang et al. [10] concluded that
the hardness and microstructure of Si-containing nanocomposite coatings changed
with varying substrate bias voltages. However, little attention has been given to
controlling a nanocomposite structure using N2 partial pressure.
Most recently, TiAlSiN, AlCrSiN, and CrZrSiN nanocomposite coatings have
been found to have even better practical performance capabilities compared to
those of nanocrystalline coatings [11–13]. CrZrSiN coatings are especially
promising; they have excellent mechanical properties and a low friction coefficient
at high temperatures. Previous studies have looked at the influence of Si or Zr
content on the microstructure, mechanical, and electrochemical properties of
CrZrSiN coatings [14, 15]. In the present study, the effect of N2 partial pressure on
the microstructure and mechanical properties of CrZrSiN nanocomposite coatings
is investigated.
EXPERIMENTAL
CrZrSiN coatings were deposited on (100) silicon wafer using a closed-field
unbalanced magnetron sputtering system. A high purity Cr–Zr–Si segment target
(99.9 %) was used for the deposition of the coatings. Prior to the deposition, the
substrates were cleaned with acetone in an ultrasonic vessel for 30 minutes. The
base pressure was pumped down to less than 2.0⋅10–3 Pa and pre-sputtering was
carried out for 10 minutes to clean the target surface at an Ar pressure of 0.39 Pa.
During the deposition, a total working pressure of 0.61 Pa was obtained. Ar and N2
were bled into the chamber with different N2 partial pressures (from 0.16 to
0.31 Pa). In other deposition conditions, a DC substrate bias of –100 V was applied
and the chamber temperature was maintained at 150 °C.
The crystalline phase of the CrZrSiN coating was analyzed using an X-ray
diffractometer (Rigaku, SmartLAB) with monochromatic CuKα (λ = 0.15456 nm)
radiation operated at 30 kV. The analyzed range of the diffraction angle 2θ was
between 20° and 80° using a step of 0.16°. X-ray photoelectron spectroscopy
(Thermo Fisher Scientific, K-ALPHA) was also performed to observe the bonding
status in the CrZrSiN coating. The hardness and elastic modulus of the coatings
were measured using a Fischer scope (Helmut Fischer, HM2000) with a load of
25 mN and dwelling time of 30 seconds. In order to avoid the substrate effect, the
indentation depth was kept to be less than approximately 0.18 μm, which was less
than 10 % of the total coating thickness. A field emission scanning electron
microscope (JEOL, JSM-7100F) and transmission electron microscope (JEOL,
JEM-ARM 200F) were employed to study the microstructure of the CrZrSiN
coatings. An annealing test was performed to evaluate the thermal stability of the
coatings. The CrZrSiN coatings were annealed at temperatures from 500 to
1000 °C in air for 30 min. After the annealing test, the hardness was investigated.
A Raman spectrometer (HORIBA, Lab Ram ARAMIS) was used and a He-Ne
laser beam was used as the excitation source.
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 4 49
RESULTS AND DISCUSSION
Cross sectional images of the CrZrSiN coatings deposited on the Si wafer at
various N2 partial pressures are shown in Fig. 1. The CrZrSiN coatings show
featureless structures in all conditions. The deposition rate decreases with
increasing N2 partial pressures. As the N2 partial pressure increased by two times,
the thickness of the coating decreased from 3.6 to 1.8 μm. This occurred because
the reactive gas would react with the sputter targets to form a nitride compound
layer at the surface. The nitride layer on the target surface reduced the metal
sputtering yield. This result is due to a fact that nitride compounds have a lower
sputtering rate and higher secondary electron emission yields than the metal [16].
The chemical compositions of the CrZrSiN coatings are shown in the table. When
N2 partial pressure increased to 0.31 Pa, the nitrogen content of the coating
increased to approximately 55 at %, and the Cr and Zr content decreased to 24 and
13 at %, respectively. However, N2 partial pressure did not significantly affect the
Si content in the coatings.
a b
Fig. 1. Cross-sectional (FE-SEM) images of CrZrSiN coatings at various N2 partial pressures of
0.16 (a) and 0.31 (b) Pa.
Chemical composition of CrZrSiN coatings at various N2 partial pressures
N2 partial pressure, Pa Cr, at % Zr, at % Si, at % N, at %
0.16 33.5 18.8 8.3 39.4
0.21 33.2 18.4 8.1 40.3
0.25 30.1 15.0 9.4 45.5
0.31 23.7 13.0 8.5 54.9
The cross sectional TEM dark-field image of the CrZrSiN coating deposited at
N2 partial pressure of 0.31 Pa is shown in Fig. 2, a, and a tiny columnar structure
was observed (bright area). To explore the nanocomposite structural details of the
CrZrSiN coating, the plan view of the coating was investigated using STEM
techniques. Figure 2, b presents a Z-contrast STEM image of the CrZrSiN coating
deposited at N2 partial pressure of 0.31 Pa. The STEM image reveals that the
crystalline phase (bright area) and the amorphous phase (dark area) coexisted in the
nanocomposite structure, and the crystalline grain size and thickness of the
amorphous phase were measured to be approximately 4.5±0.3 and 1.0±0.2 nm,
respectively. Cr and Si EDS profiles along the inserted line in Fig. 2, b are plotted
in Figs. 2, c and d, respectively.
www.ism.kiev.ua/stm 50
a b
0 1 2 3 4
In
te
n
si
ty
, a
rb
. u
n
it
s
Distance, nm
Cr
c
0 1 2 3 4
In
te
n
si
ty
, a
rb
. u
n
it
s
Distance, nm
Si
d
Fig. 2. Cross-sectional dark field TEM image (a), plan view STEM image, showing crystalline
phase and amorphous phase synthesized at N2 partial pressure of 0.31 Pa (b), Cr lateral concen-
tration profiles (c), and Si lateral concentration profiles along the line in Fig. 2, b (d).
Figure 3 shows the XRD patterns of the as-deposited coatings. The diffraction
peaks of the CrZrSiN coatings were observed at the positions shifted toward a
lower diffraction angle from the CrN (200) peak. This is because the CrZrN
consisted of a solid solution with Zr atoms [17]. Generally, the preferred
orientation of the CrZrN coating was at the (111) plane. This is because the crystal
structure of the CrZrN coating was of the fcc NaCl type with a minimum strain
energy plane of (111). However, the CrZrN (200) peak was observed in this work.
The decision of preferred orientation of the coating corresponded to the plane with
the lowest energy. Oh et al. [18] reported that the competing planes in the TiN
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 4 51
coating were (200) with the lowest surface energy and (111) with the lowest strain
energy. The preferred orientation is determined via a competition between the
surface and the strain energy. The overall energy of the (200) plane is lower than
that of the (111) under the critical thickness. However, as the strain energy
becomes dominant over the critical thickness, the (111) plane possesses lower
overall energy [18]. In the nanocomposite structure, the crystalline phase is limited
in terms of increasing over the critical size caused by the surrounding amorphous
phase. Consequently, in the current study, the preferred orientation was CrZrN
(200) in the CrZrSiN coatings, and the peak intensity decreased due to the
influence of the amorphous phase with increasing N2 partial pressure. The SiNx
diffraction peaks were not detected, which suggests that the SiNx phase in the
coating existed in an amorphous state.
35 40 45 50 55 60
0.16 Pa
0.21 Pa
0.26 Pa
0.31 Pa
CrN (200)
In
te
n
si
ty
, a
rb
. u
n
it
s
2θ, deg
ZrN (200)
Fig. 3. X-ray diffraction patterns of the as-deposited CrZrSiN coatings with various N2 partial
pressures.
In order to clarify the bonding status of the amorphous phase comprising the
CrZrSiN coatings, XPS analyses were performed. Figure 4 showed the XPS spectra
near the binding energy of N1s for coatings for N2 partial pressure of 0.16 Pa. All of
the XPS spectra were analyzed using Gaussian fit to acquire the chemical bonding
information of the film. The N1s spectra revealed the presence of the two-peak
characteristics of nitrogen in the CrZrN crystalline phase and the SiNx amorphous
phase with binding energies at approximately 396.7 and 397.7 eV, respectively. As
N2 partial pressure increased, the ratio of the peak’s SiNx to CrZrN intensity
changed from 0.13 to 0.16, which indicated that a volume fraction of the SiNx
phase increased. It was reported previously that as the amorphous phase in the
coating increased with the addition of the Si content, the SiNx peak in the XPS
result increased relatively [19]. The result of XRD and XPS proved that N2 partial
pressure influenced the distribution of the crystalline phase and amorphous phase
in CrZrSiN coatings.
An indentation test was conducted to investigate the effect of the SiNx volume
fraction change on the mechanical properties of the coatings. The hardness and
elastic modulus of the CrZrSiN coatings deposited at the various N2 partial
pressures are shown in Fig. 5. The results show that the hardness of the CrZrSiN
coatings gradually decrease from 38 to 30 GPa with increasing N2 partial pressure.
The hardness enhancement in the nanocomposite coatings was due to the
combination of the nanocrystalline phase, in which dislocations were hardly able to
emerge, and the amorphous phase, which avoids grain boundary sliding. In other
www.ism.kiev.ua/stm 52
words, the usual mechanisms that cause plastic deformation and crack propagation
in conventional polycrystalline are hindered in the nanocomposite coatings due to
the interface strain strengthening effect. A very thin amorphous layer between the
nanocrystalline phases inhibited the dislocation movement so that it helped to
enhance the hardness of the nanocomposite coatings. Musil reported that
nanocomposite coating with 1 to 2 amorphous monolayers were to enhanced the
hardness of the nanocomposite coating extensively [20]. Also Patscheider et al.
conclude that a nanocomposite coating with an amorphous phase of approximately
0.4 nm in thickness, which corresponds to four chemical bond lengths in SiNx
shows the maximum hardness [21]. In this study, the amount of the SiNx phase
increased with increasing N2 partial pressure, and the amorphous layer thickness
became increased from 0.5±0.2 nm at 0.16 Pa to 1.0±0.2 nm at 0.31 Pa.
Consequently, according to Musil and Patscheider et al. the strengthening effect
from the amorphous phase at the interface reduced, resulting in the decrease of the
hardness in this CrZrSiN coatings.
390 392 394 396 398 400 402 404 406 408 410 412
In
te
n
si
ty
, a
rb
. u
n
it
s
Binding energy, eV
CrZrN
SiN
x
Fitting curve
Fig. 4. XPS spectrum (N1s core) of CrZrSiN coatings with N2 partial pressure of 0.16 Pa.
0.16 0.21 0.26 0.31
10
15
20
25
30
35
40
45
50
N
2
partial pressure, Pa
H
ar
dn
es
s,
G
P
a
100
150
200
250
300
350
400
450
500
E
la
st
ic
m
od
ul
us
, G
P
a
Fig. 5. Hardness and elastic modulus of CrZrSiN coatings with various N2 partial pressures.
To identify the thermal stability of the CrZrSiN coating, annealing tests were
carried out in air for 30 min. The variation of hardness on the CrZrSiN coatings
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 4 53
after the annealing test is presented in Fig. 6, a. At all conditions, the hardness
values of approximately 30 GPa were maintained up to 800 °C. Kim et al. [22]
reported that, the hardness of the CrZrN coatings decreased from 32 to 22 GPa
after annealing at 500 °C, so that the CrZrSiN coating showed better thermal
stability than the CrZrN coating. This is because the addition of Si to synthesize the
amorphous phase was excellent method of maintaining the hardness of the coating
at high temperature [13, 23]. From room temperature to 800 °C, the hardness
values of the CrZrSiN coatings decreased gradually, but the values decreased
rapidly to 18 GPa after annealing at 900 °C. This decrease of the hardness could be
attributed to the effect of the annealing treatment on the residual stress in the
coating. The drastic change of hardness over 800 °C could be attributed to the for-
mation of the Cr2O3 phase on the CrZrSiN coating as shown in the Raman spectra
of as-deposited and heat-treated CrZrSiN coating in Fig. 6, b. There was no signifi-
cant change in the nature of the Raman spectrum up to 800 °C. However, weak
peaks of the Cr2O3 centered at 549 and 613 cm–1 [23] appeared at a temperature of
900 °C. Additional peaks observed at 306 and 348 cm–1 correspond to Cr2O3 [23].
Therefore, the rapid decreasing of hardness was a result of the formation of a Cr2O3
phase, which had lower hardness of 14 GPa [24] compared to the CrZrSiN
0 200 400 600 800 1000
5
10
15
20
25
30
35
40
45
H
ar
dn
es
s,
G
P
a
Temperature, °C
0.16 Pa
0.21 Pa
0.26 Pa
0.31 Pa
CrZrN [22]
a
200 300 400 500 600 700 800
25°C
800°C
900°C
613550
350
In
te
n
si
ty
, a
rb
. u
n
it
s
Raman shift, cm
–1
306
1000°C
b
Fig. 6. Hardness (a), and Raman spectrum variation (b) of CrZrSiN coatings after annealing test
for 30 min.
www.ism.kiev.ua/stm 54
coating. Also, the thermal stability of the CrZrSiN coating was not affected
significantly by its nitrogen content. Kim et al. reported that the thermal stability of
the CrZrSiN coating enhanced with increasing Si content, and the hardness of the
CrZrSiN coating with Si content of more than 13.5 at % was maintained up to
1000 °C [13]. In this study, the Si contents of all CrZrSiN coatings were in the
range of 8.1 to 9.4 at % and these amounts of Si is not enough to ensure the
enhanced thermal stability of the Si-containing CrZrSiN coatings.
CONCLUSIONS
CrZrSiN nanocomposite coatings at various N2 partial pressures were
synthesized successfully using unbalanced magnetron sputtering and studied with
regard to their microstructure and mechanical properties. The CrZrSiN coatings
showed a typical nanocomposite structure, in which CrZrN nanocrystalline grains
were embedded in a SiNx amorphous phase. XRD results showed that the CrZrSiN
coatings exhibited (200) reflections of the cubic CrZrN phase and the peak
intensity decreased at high N2 partial pressures. In XPS studies, the N1s core
spectra revealed that the CrZrSiN coating consisted of a CrZrN nanocrystalline
phase and SiNx phase, and that the amorphous phase increased with increasing N2
partial pressure. The CrZrSiN coatings exhibited a maximum hardness and elastic
modulus of 38 GPa and 280 GPa at a N2 partial pressure 0.16 Pa, respectively. The
hardness and elastic modulus of the coatings decreased with the increase of the N2
partial pressure. After the annealing test, the CrZrSiN coatings maintain their
hardness at the 800 °C, but the hardness decreased rapidly over 900 °C due to the
formation of a Cr2O3 phase. The Raman spectrum showed that the onset of the
oxidation of the CrZrSiN coating with Si content in the range of 8.1 to 9.4 at %
was 900 °C, which is considered to be the thermal stability limit of the coatings.
This research was supported by a grant from the Advanced Technology Center
(ATC) Program funded by the Ministry of Trade, Industry& Energy of Korea.
Досліджено вплив парціального тиску N2 в процесі незбалансованого
магнетронного розпилення на мікроструктуру, твердість і термостабільність наноком-
позитного покриття CrZrSiN. Отримано типову структуру нанокомпозиту, що
складається з кристалічної і аморфної фази, розподіл цих фаз змінюється зі збільшенням
парціального тиску N2. В N1s-спектрах присутні два піки, що характеризують азот в
фазах CrZrN і SiNx, відношення інтенсивностей SiNx- і CrZrN-піків зростає зі збільшенням
парціального тиску N2, що свідчить про збільшення аморфної фази в нанокомпозитних
мікроструктурах. У міру збільшення парціального тиску N2, твердість покриття CrZrSiN
знизилася з 38 до 30 ГПа в зв’язку зі збільшенням кількості аморфної фази SiNx. Після
випробування на термічну стабільність значення твердості цх CrZrSiN-покриттів
підтримували на рівні ∼ 30 ГПа до температури 800 °C, але твердість швидко знижува-
лась до 18 ГПа після відпалу при температурі 900 °C. Різка зміна твердості при
температурі понад 900 °C пов’язана з утворенням фази Cr2O3 в покритті CrZrSiN.
Ключові слова: покриття, нанокомпозит, мікроструктура, аморфна
фаза.
Исследовано влияние парциального давления N2 в процессе несбаланси-
рованного магнетронного распыления на микроструктуру, твердость и термостабиль-
ность нанокомпозитного покрытия CrZrSiN. Получена типичная структура нанокомпо-
зита, состоящая из кристаллической и аморфной фази, распределение этих фаз измени-
лось с увеличением парциального давления N2. В N1s-спектрах присутствовали два пика,
характеризующие азот в фазах CrZrN и SiNx, отношение интенсивностей SiNx- и CrZrN-
пиков возрастает с увеличением парциального давления N2, что свидетельствует об
увеличении аморфной фазы в нанокомпозитных микроструктурах. По мере увеличения
парциального давления N2, твердость покрытия CrZrSiN снизилась с 38 до 30 ГПа в связи
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 4 55
с увеличением количества аморфной фазы SiNx. После испытания на термическую ста-
бильность значения твердости CrZrSiN-покрытий поддерживали на уровне ∼ 30 ГПа до
температуры 800 °C, но твердость быстро снижалась до 18 ГПа после отжига при
температуре 900 °C. Резкое изменение твердости при температуре свыше 900 °C связа-
но с образованием фазы Cr2O3 в покрытии CrZrSiN.
Ключевые слова: покрытие, нанокомпозит, микроструктура, аморф-
ная фаза.
1. Zou C. W., Zhang J., Xie W. et al. Synthesis and mechanical properties of quaternary Ti–Cr–
Si–N nanocomposite coatings deposited by closed field unbalanced middle frequency magne-
tron sputtering // J. Alloy. Comp. – 2012. – 529. – P. 52–57.
2. Lin J., Wang B., Ou Y., Sproul W. D. et al. Structure and properties of CrSiN nanocomposite
coatings deposited by hybrid modulated pulsed power and pulsed dc magnetron sputtering //
Surf. Coat. Technol. – 2013. – 216. – P. 251–258.
3. Diserens M., Patcheider J., Levy F. Mechanical properties and oxidation resistance of nano-
composite TiN–SiNx physical-vapor-deposited thin films // Ibid. – 1999. – 120–121. – P. 158–
165.
4. Mae T., Nose M., Zhou M., Nagae T. The effects of Si addition on the structure and mechani-
cal properties of ZrN thin films deposited by an r.f. reactive sputtering method // Ibid. – 2001.
– 142–144. – P. 954–958.
5. Barshilia H. C., Deepthi B., Srinivas G., Rajam K. S. Sputter deposited low-friction and tough
Cr–Si3N4 nanocomposite coatings on plasma nitrided M2 steel // Vacuum. – 2012. – 86. –
P. 1118–1125.
6. Barshilia H. C., Deepthi B. Rajam K. S. Deposition and characterization of CrN/Si3N4 and
CrAlN/Si3N4 nanocomposite coatings prepared using reactive DC unbalanced magnetron
sputtering // Surf. Coat. Technol. – 2007. – 201. – P. 9468–9475.
7. Philippon D., Godinho V., Nagy P. M. et al. Endurance of TiAlSiN coatings: Effect of Si and
bias on wear and adhesion // Wear. – 2011. – 270. – P. 541–549.
8. Castaldi L., Kurapov D., Reiter A. et al. High-temperature phase changes and oxidation behav-
ior of Cr–Si–N coatings // Surf. Coat. Technol. – 2007. – 202. – P. 781–785.
9. Veprek S., Veprek-Heijiman M. G. J., Karvankova P., Prochazka J. Different approaches to
superhard coatings and nanocomposites // Thin Solid Films. – 2005. – 476. – P. 1–29.
10. Zhang Y., Yang Y., Zhai Y., Zhang P. Effect of negative substrate bias on the microstructure
and mechanical properties of Ti–Si–N films deposited by a hybrid filtered cathodic arc and
ion beam sputtering technique // Appl. Surf. Sci. – 2012. – 258. – P. 6897–6901.
11. Chen T., Xie Z., Gong F. et al. Correlation between microstructure evolution and high tem-
perature properties of TiAlSiN hard coatings with different Si and Al content // Appl. Surf.
Sci. – 2014. – 314. – P. 735–745.
12. Tritremmel C., Daniel R., Lechthaler M. et al. Influence of Al and Si content on structure and
mechanical properties of arc evaporated Al–Cr–Si–N thin films // Thin Solid Films. – 2013. –
534. – P. 403–409.
13. Kim Y. S., Kim G. S., Lee S. Y. Thermal stability and electrochemical properties of CrZr–Si–
N films synthesized by closed field unbalanced magnetron sputtering // Surf. Coat. Technol. –
2009. – 204. – P. 978–982.
14. Lee S. Y., Kim Y. S., Kim G. S. Thermal stability and tribological properties of CrZr–Si–N
films synthesized by closed field unbalanced magnetron sputtering // J. Vac. Sci. Technol. A.
– 2009. – 27. – P. 867–872.
15. Lee J. W., Chang S. Y., Chen H. W. et al. Microstructure, mechanical and electrochemical
properties evaluation of pulsed DC reactive magnetron sputtered nanostructured Cr–Zr–N and
Cr–Zr–Si–N thin films // Surf. Coat. Technol. – 2010. – 205. – P. 1331–1338.
16. Han Z., Tian J., Lai Q. et al. Effect of N2 partial pressure on the microstructure and mechani-
cal properties of magnetron sputtered CrNx films // Ibid. – 2003. – 162. – P. 189–193.
17. Kim G. S., Kim B. S., Lee S. Y., Hahn J. H. Structure and mechanical properties of Cr–Zr–N
films synthesized by closed field unbalanced magnetron sputtering with vertical magnetron
sources // Ibid. – 2005. – 200. – P. 1669–1675.
18. Oh U. C., Je J. H. Effects of strain energy on the preferred orientation of TiN thin films // J.
Appl. Phys. – 1993. – 74. – P. 1692–1696.
19. Lee H. Y., Jung W. S., Han J. G. et al. The synthesis of CrSiN film deposited using magne-
tron sputtering system // Surf. Coat. Technol. – 2005. – 200. – P. 1026–1030.
www.ism.kiev.ua/stm 56
20. Musil J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness
// Ibid. – 2012. – 207. – P. 50–65.
21. Patscheider J., Zehnder T., Diserens M. Structure-performance relations in nanocomposite
coatings // Ibid. – 2001. – 146–147. – P. 201–208.
22. Kim S. M., Kim B. S., Kim G. S. et al. Evaluation of the high- temperature characteristics of
the CrZrN coatings // Ibid. – 2008. – 202. – P. 5521–5525.
23. Barshilia H. C., Rajam K. S. Raman spectroscopy studies on the thermal stability of TiN,
CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings // J. Mater.
Res. – 2004. – 19. – P. 3196–3205.
24. Pang X., Gao K., Luo F. et al. Annealing effects on microstructure and mechanical properties
of chromium oxide coatings // Thin Solid Films. – 2008. – 516. – P. 4685–4689.
Received 05.08.15
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Off
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.1000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails true
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams true
/MaxSubsetPct 100
/Optimize false
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Remove
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages false
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth 8
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /FlateEncode
/AutoFilterColorImages false
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages false
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth 8
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /FlateEncode
/AutoFilterGrayImages false
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages false
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
/RUS ()
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|