Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage
The aim of this work is to determine the mechanical and tribological behavior of V–C–N coatings deposited on industrial steel substrates (AISI 8620) by using carbon–nitride coatings as a protective materials.
Gespeichert in:
Datum: | 2016 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2016
|
Schriftenreihe: | Сверхтвердые материалы |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/143863 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage / J.C. Caicedo, R. Gonzalez, H.H. Caicedo, M. Gholipourmalekabadi, C. Amaya // Сверхтвердые материалы. — 2016. — № 5. — С. 63-79. — Бібліогр.: 34 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-143863 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1438632018-11-15T01:24:07Z Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage Caicedo, J.C. Gonzalez, R. Caicedo, H.H. Gholipourmalekabadi, M. Amaya, C. Получение, структура, свойства The aim of this work is to determine the mechanical and tribological behavior of V–C–N coatings deposited on industrial steel substrates (AISI 8620) by using carbon–nitride coatings as a protective materials. Метою роботи було визначення механічної та трибологічної поведінки V–C–N-покриттів, осаджених на сталеві (AISI 8620) підкладки, для використання як захисні матеріали. Целью работы было определение механического и трибологического поведения V–C–N-покрытий, осажденных на стальные (AISI 8620) подложки, для использования как защитные материалы. This research was supported by Universidad Militar Nueva Granada, contract number ING-1775-2015, Universidad del Quindío and the CIC biomaGUNE, Platform Manager – Surface Analysis and Fabrication, Spain. 2016 Article Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage / J.C. Caicedo, R. Gonzalez, H.H. Caicedo, M. Gholipourmalekabadi, C. Amaya // Сверхтвердые материалы. — 2016. — № 5. — С. 63-79. — Бібліогр.: 34 назв. — рос. 0203-3119 http://dspace.nbuv.gov.ua/handle/123456789/143863 661.888.1:621.793 en Сверхтвердые материалы Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Получение, структура, свойства Получение, структура, свойства |
spellingShingle |
Получение, структура, свойства Получение, структура, свойства Caicedo, J.C. Gonzalez, R. Caicedo, H.H. Gholipourmalekabadi, M. Amaya, C. Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage Сверхтвердые материалы |
description |
The aim of this work is to determine the mechanical and tribological behavior of V–C–N coatings deposited on industrial steel substrates (AISI 8620) by using carbon–nitride coatings as a protective materials. |
format |
Article |
author |
Caicedo, J.C. Gonzalez, R. Caicedo, H.H. Gholipourmalekabadi, M. Amaya, C. |
author_facet |
Caicedo, J.C. Gonzalez, R. Caicedo, H.H. Gholipourmalekabadi, M. Amaya, C. |
author_sort |
Caicedo, J.C. |
title |
Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage |
title_short |
Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage |
title_full |
Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage |
title_fullStr |
Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage |
title_full_unstemmed |
Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage |
title_sort |
mechanical and tribological properties of v–c–n coatings as a function of applied bias voltage |
publisher |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України |
publishDate |
2016 |
topic_facet |
Получение, структура, свойства |
url |
http://dspace.nbuv.gov.ua/handle/123456789/143863 |
citation_txt |
Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage / J.C. Caicedo, R. Gonzalez, H.H. Caicedo, M. Gholipourmalekabadi, C. Amaya // Сверхтвердые материалы. — 2016. — № 5. — С. 63-79. — Бібліогр.: 34 назв. — рос. |
series |
Сверхтвердые материалы |
work_keys_str_mv |
AT caicedojc mechanicalandtribologicalpropertiesofvcncoatingsasafunctionofappliedbiasvoltage AT gonzalezr mechanicalandtribologicalpropertiesofvcncoatingsasafunctionofappliedbiasvoltage AT caicedohh mechanicalandtribologicalpropertiesofvcncoatingsasafunctionofappliedbiasvoltage AT gholipourmalekabadim mechanicalandtribologicalpropertiesofvcncoatingsasafunctionofappliedbiasvoltage AT amayac mechanicalandtribologicalpropertiesofvcncoatingsasafunctionofappliedbiasvoltage |
first_indexed |
2025-07-10T18:11:38Z |
last_indexed |
2025-07-10T18:11:38Z |
_version_ |
1837284569631424512 |
fulltext |
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 63
UDC 661.888.1:621.793
J. C. Caicedo1, *, R. Gonzalez1, H. H. Caicedo2, 3,
M. Gholipourmalekabadi4, C. Amaya5
1Tribology, Powder Metallurgy and Processing of Solid Recycling
Research Group, Universidad del Valle, Cali, Colombia
2Janssen BioTherapeutics, Janssen Research & Development, LLC,
Pharmaceutical Companies of Johnson & Johnson, Spring House,
PA, USA
3National Biotechnology and Pharmaceutical Association,
Chicago, USA
4Biotechnology Department, School of Medicine, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
5Grupo de Investigación en Materiales ASTIN SENA, Cali, Colombia
*jcaicedoangulo1@gmail.com
Mechanical and tribological properties of V–C–N
coatings as a function of applied bias voltage
The aim of this work is to determine the mechanical and tribological
behavior of V–C–N coatings deposited on industrial steel substrates (AISI 8620) by
using carbon–nitride coatings as a protective materials. The coatings were deposited
on silicon (100) and steel substrates via magnetron sputtering and by varying the
applied bias voltage. The V–C–N coatings were characterized by X-ray diffraction
(XRD), exhibiting the crystallography orientations (111) FCC for V–C–N conjugated
by VC (111) and VN (111) phases and (200) FCC for V–C–N conjugated by VC (200)
and VN (200) phases. X-ray photoelectron spectroscopy (XPS) was used to determine
the chemical composition of metallic carbon–nitride materials. Atomic force microcopy
(AFM) was used for determination of the change in grain size and roughness with
deposition parameters. By using nanoindentation, pin-on-disk, and scratch test curves,
it was possible to estimate the hardness, friction and critical load of V–C–N surface
material. Scanning electron microscopy (SEM) was performed to analyze morpho-
logical surfaces changes. Mechanical and tribological behavior in VCN/steel[8620] sys-
tem, as a function of a bias voltage deposition, showed an increase of 58 % in the hard-
ness, and reduction of 39 % in the friction coefficient, indicating thus that the
V–C–N coatings may be a promising material for industrial applications.
Keywords: surfaces, crystal growth, physical vapor deposition,
mechanical testing, tribology and wear.
INTRODUCTION
Mechanical and tribologoical properties of hard coatings have
been extensively studied and contributed to the improvement of the surface proper-
ties of a myriad of industrial devices such as cutting tools and injection molds for
polymeric materials [1]. In this regard, the literature reports on different systems
and heterostructures based on nitride, carbide, and carbon nitride such as ZrCN [1],
TiCN [2], NbCN [3], and CrN/AlN [4], which exhibits high corrosion resistance
and acceptable tribological properties. Other transition metals such as vanadium
© J. C. CAICEDO, R. GONZALEZ, H. H. CAICEDO, M. GHOLIPOURMALEKABADI, C. AMAYA, 2016
www.ism.kiev.ua/stm 64
(V) have been used as binary coatings (e.g., VC and VN), thus showing relevant
mechanical and electrochemical properties [5, 7]. Accordingly, in the current litera-
ture it is possible to observe novel reports on coatings based on conjugate com-
plexes for V–C–N from VC and VN materials [8]. Moreover, it has become
established that the carbon nitride with transition metals has very promising
physical characteristics due to high chemical and physical stabilities, which allow
many applications under several mechanical conditions. Interestingly, G. Kamath
et al. [9] reported the microstructure–property relationship of reactively magnetron
sputtered VCxNy films. Nevertheless, the literature still presents a few research
examples focused on analysis of mechanical and tribological properties for VCN
system as a function of applied negative bias voltage, which is critical in the
understanding of carbon–nitride system for industrial application under aggressive
environments. Furthermore, changes of physical properties (hardness, elastic
modulus, friction coefficient and critical load) on steel coated with VCN have not
yet been thoroughly studied. Often, a decrease of functional performance of this
material is observed in devices with industrial application (e.g., cutting tools, injec-
tion molds, and surgical devices). The aim of this work is to study the effect of
negative bias voltage on the structural and mechanical properties of V–C–N
coatings deposited on commercial AISI 8620 steel with different bias voltages
from 0 to –100 V (with 2 µm of thickness) for possible metalworking applications.
EXPERIMENTAL DETAILS
V–C–N coatings were grown on silicon (100) and AISI 8620 steel substrates by
using a multitarget magnetron reactive sputtering technique, with an r.f. source
(13.56 MHz) and two stoichiometric vanadium (V) and graphite (C) targets of
99.9 % purity for both targets. The deposition parameters for obtaining high-
quality coatings were sputtering power of 450 W for V and 400 W for the C target;
substrate temperature of 300 °C; under circular rotation substrate with 60 RPM to
facilitate the formation of the stoichiometric coating; the sputtering gas was a mix-
ture of Ar 92.5 % and N2 7.5 % with a total working pressure of 6⋅10–3 mbar, under
argon and nitrogen gas flow of 50 and 3.75 sccm, respectively. An unbalanced r.f.
bias voltage was applied, which generates a negative signal of 0, –40, –70 and –
100 V to systematically study its effect on coating electrochemical properties. The
total thickness of all the coatings was kept constant around 2 µm. The crystallo-
graphic structure was analyzed via X-ray diffraction (XRD), with a Bruker D8
Advance diffractometer with Cu cathode (CuKα radiation λ = 1.5405 Å) and scin-
tillation detector using a 0–20 setting and performing a sweep from 20° to 80° with
a pitch of 0.01 degrees and a step time of 2 s.
The surface analysis for all coatings was determined by using a scanning
electron microscopy Philips XL 30 FEG. The chemical composition of the coatings
was determined via X-ray spectroscopy Photoelectron (XPS). Thus, the XPS
experiments were performed in a SPECS Sage HR 100 spectrometer with a non-
monochromatic X-ray source (aluminum Kα line of 1486.6 eV energy and a power
applied of 300 W and calibrated using the 3d5/2 line of Ag with a full width at half
maximum (FWHM) of 1.1 eV). The selected resolution for the spectra was 30 eV
of Pass Energy and 0.5 eV/step for the general survey spectra and 10 eV of Pass
Energy and 0.15 eV/step for the detailed spectra of the different elements. All
measurements were made in an ultra-high vacuum (UHV) chamber at a pressure
around 5⋅10–8 mbar. Samples were etched for 5 min with an Ar+ ion beam with
energy of 3 keV. Moreover, C1s spectra were fitted with software CasaXPS
V2.3.15 using Gaussian Lorentzian functions (after a Shirley background
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 65
correction), where the FWHM of all the peaks were constrained while the peak
positions and areas were set free. The thickness for ternary coatings was around of
2±0.1 μm, and determined by means of a (Dektak 3030) Profilometer. Grain size
and roughness was determined via atomic force microscopy (AFM-Asylum
Research MFP-3D®) and calculated by a Scanning Probe Image Processor
(SPIP®). In this work, SPIP® was used in the grain size analysis for a quantitative
study of the grains and particles, and in the roughness analysis for an advanced
measurement of the surface roughness. Hardness and elastic modulus
measurements were performed by using a nanoindenter (UBI1-Hysitron) under
load and unload mode with a matrix measurements of 25 points and maximum load
of 8 mN. Moreover, tribological characterization was performed by means of Mi-
crotest, MT 400-98 tribometer, using a 6-mm diameter 100Cr6 steel ball like pat-
tern slide. The applied load was 0.5 N with a total running length of 400 m.
Adherence of the layers was studied by using a Scratch Test Microtest MTR2
system. The parameters were a 6 mm scratch length and a raising load of 0–60 N.
RESULTS AND DISCUSSION
X-ray diffraction analysis
Figure 1 shows the XRD patterns of the V–C–N coatings deposited on Si(100)
for different r.f. negative bias voltages from 0 to –100 V. From that data, it is
possible to infer that the coatings have a cubic structure based on complex
conjugate with two substructures of vanadium carbide (VC) and vanadium nitride
(VN). Therefore, the strongest peaks correspond to the V–C–N (111) and (200)
planes, indicating a light textured growth along these orientations. The other weak
peaks correspond to diffractions from V–C–N (220) planes of the fcc structure.
With regard to the lattice parameter, it was obtained the value of a0 (±0.0001 nm)
for V–C–N coatings, where the Nelson–Riley function was employed in the re-
finement procedure (table). The presence of the V–C–N (111) obtained is associ-
ated to a substitution mechanism, where C atoms replace N atoms, resulting in a V-
ordered C–N disordered fcc NaCl-type structure in which Ti placed the Wyckoff
site 4a, while C and N atoms occupied randomly the Wyckoff site 4b [9]. This
means that the nitrogen gas flow rate influences directly the structure of VC1-xNx
coatings. When the nitrogen gas flow rate is around 16 sccm and r.f. negative bias
voltages from 0 to –100 V are used, V access to the deposition surface is facili-
tated; hence, the fcc structure is determined by a partially ordered structure with V
atoms, creating vacancies in nonmetallic sublattices [9, 10]. On the other
a
b
Fig. 1. XRD patterns: V–C–N coatings grown with different r.f. negative bias voltages (0 (1),
–40 (2), –70 (3), –100 (4) V) (a) and maximum peak with shift toward low angles in relationship
to the increase of applied r.f. negative bias voltage (b); dash lines indicate the position of the
peaks obtained from JCPDF files ((VN) JCPDF 00-035-0768 and (VC) JCDDF 01-073-0476).
www.ism.kiev.ua/stm 66
hand, it was observed that the V–C–N (111) peak position suffers a great deviation
from bulk value for (VC and VN) materials, indicating thus a possible stress evo-
lution of V–C–N single layers with the applied r.f. negative bias voltage (see Fig.
1, b). The quasi-relaxed position observed for a lower bias voltage was
progressively shifted to higher compressive stress values as the bias is increased
until −100 V, therefore, this compressive effect is reached due to impact Ar+
mechanism actuating onto V–C–N coatings. For the higher negative bias voltage
(−100 V), an abrupt change in V–C–N (111) peak position was observed,
presenting a stress increasing due to the movement of this peak toward higher
angles compared to other single layer. The stress changes in V–C–N (111) peak
position come together with a low symmetric broadening and a decreasing in its
intensity.
Lattice parameter and stoichiometric relationship determined by XPS
of V–C1-xNx coatings as a function of the negative bias voltage
Negative bias voltage, V V–C1-xNx
a0, nm
fcc (111)
V/(C + N)
0 V55C27N18 0.4161 1.20
–40 V59C25N16 0.4168 1.40
–70 V54C28N18 0.4180 1.17
–100 V55C28N17 0.4187 1.22
XPS analysis of VCN coating
The XPS survey spectra for all V–C–N single layers as function of a negative
bias voltage from 0 to –100 V are shown in Fig. 2. According to the XPS literature
regarding VC1–xNx coatings materials [9, 11], the concentration measurements and
identification of the specific bonding configurations for the VC1–xNx layers are
more reliable when XPS analysis is used. Hence, the composition of the VC1–xNx
coating is slightly over stoichiometric (see table), which is attributed to the huge
number of nitrogen vacancies that can be accommodated in the face centered cubic
structure of VC1–xNx analyzed by XRD (see Fig. 1) [11]. So, the electronic spectra
carry information of the chemical composition and bonding characteristics of the
VC1–xNx coatings generating thus an increase in the reliability of the results.
Finally, the carbon (C) signal presence can be associated to a few surface
contaminations. In this sense, the binding energies’ identification was realized in
agreement with NIST X-ray photoelectron spectroscopy Database 20, Version 3.5.
So, the integral V2p, C1s, and N1s, spectra corrected by relevant sensitive factors
can evaluate the concentrations of V and N elements of VC1–xNx coatings. The
corresponding integral of the deconvoluted peaks can also be used to estimate the
bond contents, which are described by the following equation (1) [12]:
∑
∑
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
j
j
i
i
i
S
A
S
A
C , (1)
where S is the sensitivity factor, A is the integral of deconvoluted peaks, and Ci is the
atomic content. The numerator is the sum of the integral of one sort of bond; the
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 67
denominator is the sum of the integral of all types of bonds decomposed from the
whole peak of V2p, C1s and N1s, spectra in the sample. In the chemical composition
of the coating (see table), the prevalence of ternary carbon nitride
(VC1–xNx), such as it is shown in the X-ray diffraction pattern, is evident (see Fig. 1).
1203 1003 803 603 403 203 3
0
2.50×10
5
5.00×10
5
7.50×10
5
1.00×10
6
1.25×10
6
1.50×10
6
1.75×10
6
2.00×10
6
2.25×10
6
2.50×10
6
1
2
In
te
n
si
ty
, c
/s
Binding energy, eV
C
K
L
L
V
L
M
M
O
K
L
L
V
2
s
O
1
s
V
2
p
N
1
s
C
1
s
S
i 2
s
S
i 2
p
V
3
s
V
3
p
3
4
Fig. 2. XPS survey spectrum for VC1-xNx coatings deposited on Si substrate with the r.f. negative
bias voltage from 0 to –100 V: 0 (1), –40 (2), –70 (3), –100 (4) V.
Regarding the VC1-xNx coating deposited with the applied negative bias voltage of –
40 V, Fig. 3 shows the peaks with highest intensity corresponding to V–N (514.4 eV)
and V–C (513.3 eV) bounds at V2p signal, C–C (285.0 eV) bounds at C1s signal, and
N–V (397.4 eV) bounds at N1s signal evidencing the formations of metal–nitride and
metal–carbide bounds. [12–14]. In this sense, for V2p signal (see Fig. 3, a), it was
found the energy bindings for V2p1/2 signal with V–O (523.6 eV), V–N (522.8 eV)
bounds, moreover, for V2p3/2 signal was found O–V–O (516.4 eV) bound [15].
528 526 524 522 520 518 516 514 512
0
1×10
4
2×10
4
3×10
4
4×10
4
5×10
4
6×10
4
7×10
4
8×10
4
9×10
4
1×10
5
1×10
5
In
te
n
si
ty
, c
/s
Binding energy, eV
V�O2
516.4 eV
V�N
514.4 eV
V�C
513.3 eV
V2p1/2
V�O
523.6 eV
V�N
522.8 eV
V2p3/2
a
291 290 289 288 287 286 285 284 283 282 281
0
1×10
3
2×10
3
3×10
3
4×10
3
5×10
3
6×10
3
7×10
3
8×10
3
9×10
3
1×10
4
Binding energy, eV
I
n
te
n
si
ty
, c
/s
C=N
286.7 eV
C�V
282.8 eV
C�C
285 eV
b
403 402 401 400 399 398 397 396
0
4.0×10
3
8.0×10
3
1.2×10
4
1.6×10
4
2.0×10
4
2.4×10
4
2.8×10
4
3.2×10
4
3.6×10
4
Binding energy, eV
N=C
398.8 eV
N�V
397.4 eV
In
te
n
si
ty
, c
/s
c
Fig. 3. High-resolution spectrum for V–C–N coatings: V2p (a), C1s (b), N1s signals (c).
www.ism.kiev.ua/stm 68
For C1s signal (see Fig. 3, b), it was found the energy bindings of 286.7 eV for
C=N bounds, 285.0 eV for C–C bonds and 282.8 eV for bounds C–V associated to
chemical interaction in VC1–xNx molecule [16]. Moreover, the Fig. 3, c exhibits the
energy bindings for N=C with 398.8 eV, and N–V with 397.4 eV, showing thus,
the organic and metallic principal bounds [17]. The change of binding energy com-
pared to VC1–xNx single layer materials verifies the formation of V–C–N layer;
therefore, calculating the peak area yields an atomic ratio of V59C25N16, similar to
others reports in the literature [18]. Accordingly, the last stoichiometric relation
corresponds to chemical bounds, which are contained in fcc structure present in
VC1–xNx material (XRD results (see Fig. 1)).
Surface analysis by AFM
Surface morphology of ternary materials in relation to the increasing negative
bias voltage on V–C–N coatings deposited onto Si (100), was studied. Figure 4
shows AFM images for single layer coatings with statistical distribution of grain
size 5 µm×5 µm for the bias voltage – 0 (a), –40 (b), –70 (c), –100 (d) V.
a
b
c
d
Fig. 4. AFM images for V–C–N coatings deposited at the negative bias voltage of 0 (a), –40 (b),
–70 (c), –100 (d) V.
Figure 5 shows AFM results where each data point in the graphs represents an
average over 4 AFM images for each sample. It is also possible to compare the
grain size (see Fig. 5, a) and roughness (see Fig. 5, b) values for V–C–N single
layers; therefore, in this study it was found a decreasing trend for grain size and
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 69
roughness when the bias voltage is increased. Moreover, this study found that the
lowest value for the grain size is associated with the layers deposited with –100 V
(see Fig. 5, b), determining thus a reduction in the grain size of 39.5 % for the V–
C–N layer, in relation to grain sizes obtained for the deposited layers to 0 V,
respectively. Furthermore, it is possible to observe a reduction in the grain size of
43 % for the ternary coatings, in relation to grain sizes obtained for the deposited
layers at 0 V, respectively. This is relevant, since the surface morphology plays an
important role in the mechanical and tribological properties.
0 10 20 30 40 50 60 70 80 90 100
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
R
ou
gh
n
es
s,
μ
m
Negative bias voltage, V
5.27
5.01
4.47
3.12
a
0 10 20 30 40 50 60 70 80 90 100 30
32
34
36
38
40
42
44
46
48
50
52
54
G
ra
in
s
iz
e,
n
m
Negative bias voltage, V
50.6
49.1
45.9
35.6
b
Fig. 5. Morphological analysis obtained from AFM results: roughness (a) and grain size (b) as a
function of applied negative bias voltages from 0 to –100 V. Corresponding error bars were
obtained by the standard deviation of the values using the statistical data processor for images
(SPIP ®).
Mechanical properties
Load–displacement indentation curves of V–C–N layers using the standard
Berkovich indenter and indentation matrix image via AFM are shown in Figs. 6, a
and b. The values of elasticity modulus, E, and hardness, H, were obtained by
using Oliver and Pharr’s method in multilayers deposited on AISI 4140 steel
substrates [4, 19]. Hardness values of both, V–C–N coatings and the ternary
coating measured by nanoindentation as a function of applied negative bias
voltage, are presented in Fig. 7, a and Fig. 8, a, respectively.
0 10 20 30 40 50 60 70 80 90 100
1
2
3
4
5
6
7
8
9
10
L
oa
d,
m
N
Displacement, nm
1 2 3 4
a
–7 0 7
7
X�range: 14.00 μm
Y
�r
an
ge
: 1
4.
00
μ
m
–7
0
b
Fig. 6. Nanoindentation measurements: load–displacement indentation curves of VCN system
(–100 (1), –70 (2), –40 (3), 0 (4) V) (a) and AFM image of indentation matrix for ternary coat-
ings deposited with a negative bias voltage of –40 V (b).
www.ism.kiev.ua/stm 70
0 10 20 30 40 50 60 70 80 90 100
10
15
20
25
30
35
H
ar
dn
es
s,
G
P
a
Negative bias voltage, V
(8620 Steel)/VCN
a
0 10 20 30 40 50 60 70 80 90 100 200
210
220
230
240
250
260
270
280
290
E
la
st
ic
m
od
ul
us
, G
P
a
Negative bias voltage, V
(8620 steel)/VCN
b
Fig. 7. Mechanical properties for V–C–N coatings as a function of applied negative bias voltage:
hardness as a function of n (a) and elastic modulus (b).
0 10 20 30 40 50 60 70 80 90 100
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
H
3 /E
2 , G
P
a
Negative bias voltage, V
(8620 Steel)/VCN
a
0 10 20 30 40 50 60 70 80 90 100 60.0
60.5
61.0
61.5
62.0
62.5
63.0
63.5
E
la
st
ic
r
ec
ov
er
y,
%
Negative bias voltage, V
(8620 Steel)/VCN
b
Fig. 8. Elasto-plastic properties with plastic deformation for V–C–N single layer coatings growth
with the negative bias voltage form 0 to –100 V: plastic deformation resistance (a) and elastic
recovery (b).
Elastic modulus values of ternary layers are also presented in Fig. 7, b, which
show relevant differences in their values in relation to the different applied nega-
tive bias. Moreover, the hardness and elastic modulus in these single layer coatings
varied from 18 to 30 GPa and from 223 to 260 GPa, respectively. The highest
hardness of the V–C–N coatings corresponding to 30 GPa, was obtained by the
highest negative bias (–100 V), therefore, was increase a 40 % of hardness in rela-
tion to coating growth with 0 V voltage. This increase in mechanical properties is
related to the remarked densifying effect that is present when the bias voltage is
applied, inducing the impact of Ar+ ions on coating surface, thus creating greater
momentum transfer and generating an increase of residual stress in the V–C–N
coating showing within the (111) crystallography direction study by XRD results
(see Fig. 1, b). The enactment in the mechanical properties can be associated with a
hardness improvement by using coating with lower grain size, as observed from
AFM images (see Fig. 4) [4, 20, 21].
The high interface density of ternary coatings contributes to impeding
dislocation motion and the dislocation glide across the grain boundaries, which
would require a critical yield stress being related to the difference in the elastic
shear modulus of the single layer deposited without a bias voltage [22, 23]. The
Hall-Petch effect is routinely used to explain material hardening. Therefore, when
metal–ceramic materials such hard, V–C–N coatings with grain size higher than
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 71
5.2 nm are obtained, it is possible to apply the Hall-Petch effect to explain the
hardening, because the current V–C–N coatings with lower grain size are within
nanoscale regimen (AFM results, see Figs. 4, 5), and thus the dislocations should
not occur in nanoscale structures below a certain value of grain sizes (5.2 nm) [19].
In this sense, Fig. 7, a shows that the hardness for single layer coatings is related to
the bias voltage for the effect of the grain size reduction [21–23].
Additionally, it was possible to analyze the influence of the bias voltage on
coating hardness, as hardness values increase with the increases of applied voltage.
This result can be explained by correlating with the results obtained by AFM where
the increase of the applied voltage decreases the grain size, which increases grain
boundaries and results in an increase in coating hardness due to the Hall-Petch
effect as shown by the following equation [24]:
2/1
0
−+= kDHH , (2)
where H is the hardness of the polycrystalline material with grain size D, H0 is the
hardness of the same material with a larger grain size, and k is a constant measure
of relative hardening with the contribution of grain boundaries. The increase of
coatings hardness is attributed to the increase of the bias voltage associated with
increase sputtering of Ar+ atoms causing a higher density and a reduction in grain
size. The grain boundaries act as barriers to the movement of dislocations in the
V–C–N material, thus a dislocation is difficult to move from one grain to another
across borders due to a relative disorder, in which the atoms are in that area, caus-
ing the material with small grains to have higher hardness. These results indicate
that the mechanical properties of hardness and elastic modulus (Young’s modulus
(Er)) are highly dependent on a bias voltage [25].
On the other hand, plastic deformation resistance (H3/E2) [26] and elastic
recovery (R) in the carbon nitride coatings are shown in Fig. 9. Elastic recovery for
all V–C–N coatings was calculated by using the following equation:
max
max
δ
δ−δ
= pR , (3)
where δmax and δp are the maximum and residual or plastic displacement,
respectively [27, 28]. Data for the equation were taken from the load–penetration
depth curves of indentations for each coating, according to Fig. 6, a. From Fig. 8,
the carbon nitride coatings increased the plastic deformation resistance and elastic
recovery with respect to the applied negative bias voltage. The maximum value
was reached for V–C–N system deposited with (–100 V), i.e. the plastic
deformation (see Fig. 8, a) due to the applied load is more markedly reduced than
that of other coatings deposited without the bias voltage. This effect is clearly
correlated to the reduction of grain size, increasing the film density, hardness, and
elastic recovery [4, 27].
Tribological properties
Pin-on-disk analysis. The friction coefficient values for AISI 8620 steel
substrates coated with V–C–N coatings deposited at different bias voltages, were
tested against steel balls and presented in Fig. 9, a. The friction coefficients curves
showed two distinct stages. In the first stage (zone I), the friction coefficient (l)
began at a low level (0.18–0.45) in the first contact; this stage can be attributed to
the running-in period associated with a kind of contact between the steel ball and
the coating, where the formation of wear debris occurs by the cracking of rough-
www.ism.kiev.ua/stm 72
ness tips on both counterparts. This stage has a short-time period, then the friction
coefficient increases to 0.20–0.50 followed by a decrease to the friction coefficient
of the second stage (zone II). This stage (zone I) is defined as the steady-state
friction period and begins after about 20–90 m of sliding distance (m) [4, 28, 29].
In the zone II, from (pin-on-disk analysis picture), it was possible to observe the
distance settling range (steady-state friction period) between 100 and 400 m for
each of the friction curves. In these results, there were not significant changes
appreciated in the increase of the friction coefficient. This effect may be associated
to overcome the distance of 100 m, the surfaces of the tribological pair between
100Cr6 steel pin and the V–C–N system was normalized relative to the contact
surface which had higher (V–C–N) Young’s modulus generating a constant Er and
a coefficient of friction almost invariable. Figure 9, b shows the friction coefficient
as a function of the applied negative bias voltage.
0 50 100 150 200 250 300 350 400
0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
F
ri
ct
io
n
c
oe
ff
ic
ie
n
t
Distance, m
3
5
I II
1
2
4
a
0 10 20 30 40 50 60 70 80 90 100 0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
F
ri
ct
io
n
c
oe
ff
ic
ie
n
t
Negative bias voltage, V
8620 Steel/VCN
8620 Steel
b
Fig. 9. Tribological results of 8620 steel substrates coated with V–C–N single layers coatings:
friction coefficient as a function of a sliding distance (steel (1), 0 (2), –40 (3), –70 (4), –100 (5)
V (a) and friction coefficient as a function of the applied negative bias voltage (b).
Tribological properties of V–C–N carbon nitride coatings are provided in
Fig. 10 for comparison in relation to single layer systems. These tribological results
showed the reduction of the friction coefficient while the applied negative bias is
increased. Thus, the friction coefficient of V–C–N coatings ranged from
approximately 0.46–0.19, being the lowest value reported for the single layers
growth at V = –100 V (friction coefficient 0.25) [19]. In this regard, the friction
coefficient value represented a decrease at approximately 58 % of the friction
coefficient with respect to the V–C–N coating deposited at 0 V. The last behavior
can be related to the friction mechanical model proposed by Archard [30], which
relates the contribution of the contact surface roughness and the elastic-plastic
properties of the coating in the following equation:
),(
),(
ErH
as
k
N
f
t
R
C
F
F
σ
==μ , (4)
where µ is the friction coefficient, Ck is a constant that depends on the parameter of
the test, R(s,a) is the coating roughness, and σt is a variable that takes into account
the elastic-plastic properties (hardness, H, or elastic modulus, Er), obtained by
mechanical measures [29]. In agreement with the model presented by Archard,
when the surface coating has low roughness and high hardness, the friction
coefficient will tend to decrease and will be stable for long sliding distances,
specifically if the counterpart of the test is softer than the coating. On the other
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 73
hand, although hardness has long been regarded as a primary material property that
defines wear resistance, strong evidences suggest that the elastic modulus can also
have an important influence on the wear behavior. In particular, the elastic strain to
failure, related to the ratio of hardness H and elastic modulus Er, which has been
shown by a number of authors to be a more suitable parameter to predict wear
resistance than with hardness alone.
Insert
Abrasive wear Adhesive wear
a
Insert II
Abrasive wear Adhesive wear
Insert I
b
Fig. 10. SEM micrograph of wear track on V–C–N coatings deposited on AISI 8620 steel:
V–C–N coating deposited with negative bias voltages of 0 V (a), and V–C–N coating deposited
with negative bias voltages of –100 V (b).
In this research, it is possible to discuss the concept of ternary carbon nitride
(V–C–N) with relatively high hardness and high elastic modulus, which can exhibit
improved toughness and are, therefore, better suited to optimize the wear resistance
of ‘‘real’’ industrial substrate materials (i.e., mechanical devices with low moduli).
Recent advances in the development of metal–ceramic coatings are summarized
and discussed in terms of their relevance to practical applications. Therefore, it is
possible to observe that the elastic strain to failure, which is related to H3/E2 (see
Fig. 9), affects the tribological behavior of V–C–N single layer. That provides
superior wear resistance when deposited on the substrate materials for mechanical
applications [4, 31]. Consequently, this behavior suggests that improving plastic
deformation resistance (H3/E2) when the negative bias voltage is increased, exerts
more wear resistance due to enhanced mechanical properties (see Fig. 9) associated
with the changes in the internal stress (previously observed in XRD results), thus,
generating a reduction in the friction coefficient (see Fig. 9, b).
www.ism.kiev.ua/stm 74
As can be seen in Fig. 10 (SEM micrographs), it is possible to find different
wear mechanisms, such abrasive wear (scuffing), adhesive wear, oxidation, and
diffusion. In this sense, the abrasion mechanism is a predominant phenomenon at
V–C–N coatings with a low bias voltage (low mechanical and tribological
properties, see Figs. 6–9). The value of a negative bias voltage, at which the
maximum wear values occur will depend on different factors like the combination
of high roughness, small grain size (see Figs. 4, 5 ), and low elastic modulus,
among others. Therefore, in this research it was presented the wear surface for V–
C–N coatings deposited with different bias voltages (from 0 to –100 V), showing
thus changes in the wear mechanisms when the negative bias voltages were applied
and increased respectively (e.g., reduction in scuffing presence on V–C–N
deposited with –100 V).
Adherence analysis by using a critical load criterion
Adhesion behavior. The scratch test was used to characterize the coating
adherence strength. The adhesion properties of single-layer coatings can be
characterized by the following two terms: LC1, the lower critical load, which is
defined as the load where cracks first occurred (cohesive failure); and LC2, the
upper critical load, which is the load where the first delaminating at the edge of the
scratch track occurred (adhesive failure) [31]. The values of critical load (LC1 and
LC2) for the different coatings are shown in Fig. 11. The LC1 was shown for the
different coatings in the range of 8.3–15 N, in which the lowest value was
attributed to the hard coatings deposited with the bias voltage of 0 V and the
highest value was attributed to the V–C–N ternary system growth with the negative
bias voltage of –100 V.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
F
ri
ct
io
n
c
oe
ff
ic
ie
n
t
L
C2
L
C1
0 10 20 30 40 50 60
Load, N
a
0 10 20 30 40 50 60
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
F
ri
ct
io
n
c
oe
ff
ic
ie
n
t
Load, N
L
C2
L
C1
b
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
F
ri
ct
io
n
c
oe
ff
ic
ie
n
t
L
C2
L
C1
0 10 20 30 40 50 60
Load, N
c
0 10 20 30 40 50 60 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
F
ri
ct
io
n
c
oe
ff
ic
ie
n
t
L
C2
L
C1
Load, N
d
Fig. 11. Tribological results for friction coefficient curves vs. applied load for V–C–N coatings
deposited with different applied negative bias voltages, showing thus the adhesion failure (LC2):
0 (a), –40 (b), –70 (c), –100 (d) V.
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 75
The critical loads in adhesive failure (LC2) values for the different coatings are
summarized in Fig. 12. This figure clearly shows that the adhesion properties of
metal ceramic coatings increase as a function of the increase in the applied
negative bias. Due to the quantitative adhesion measurements between the layers
and substrates, this process is complex even for single layer coatings, which is in
agreement with some previously published reports [4, 29]. A qualitative
characterization is necessary to evaluate the adhesion behavior of V–C–N coatings,
as described before in this section, that is, in terms of LC1 and LC2 critical loads.
Therefore, for the purpose of ensuring a fair comparison between the different
ternary coatings, it was assumed that the adhesion between the substrate and the
single layer remains constant for similar applied negative bias voltage (since the
preparation conditions and parameters were the same). Besides, in all cases, it was
verified that the parameters of the scratch test for all samples were also the same.
According to the latter, it was expected that the response to the applied load and
adhesive failure will only depend on the coating properties due to the applied
negative bias voltage effect.
0 10 20 30 40 50 60 70 80 90 100
20
22
24
26
28
30
32
34
36
38
40
C
ri
ti
ca
l l
oa
d,
N
Negative bias voltage, V
(8620 Steel)/VCN
Fig. 12. Correlation of critical loads (adhesive failure) as a function of applied negative bias
voltage for all V–C–N coatings.
From Fig. 12, it was possible to analyze that the values of critical load increased
when the applied negative bias voltage was increased. Then, this improvement is in
part due to the increase in the coating/substrate deformation resistance (see Fig. 8).
In this mechanism, the densification and grain size reduction (see Figs. 4, 5) serves
as a crack tip deflector that changes the direction of the initial crack when it
penetrates deep into the coating, and strengthens the coating performance.
Moreover, by decreasing the grain size, the dislocations among the boundaries
grain found a major impediment to moving; therefore, those dislocations will
require higher critical shear stress to move and spread throughout the coating and
allow delaminating the V–C–N coating. This effect means that carbon nitride coat-
ings can fail in a fragile manner [32, 33] because these coatings are homogeneous
systems. In consequence, the ternary single layers such as those studied in the
current work can enhance the resistance of coatings against crack propagation in
relation to the mechanical property evolution presented by the enhanced hardness
and elastic modulus (see Fig. 7) with highest elastic recovery (R, %) (see Fig. 8),
preserving the integrity of the coatings under punctual (static) and dynamic loads
[34]. It was observed that an increase of 34 % in the LC2 for V–C–N coating
deposited with the applied negative bias voltage of –100 V in relation to the single
layer coating growth with the lowest applied negative bias voltage (0 V).
www.ism.kiev.ua/stm 76
Surface tribological analysis. Scanning electron microscopy images showing
the different behaviors of V–C–N coatings deposited with different negative bias
voltages, after scratch tests are shown in Figs. 13, a and b. These images revealed
that at the beginning of the scratch, pronounced deformation appeared due to the
substrate plastic deformation and a coating debris removal, associated with the
adhesive layer/substrate failure mechanism sideward lateral flanking [35]. Thus,
SEM images confirm the scratch test results observed in Fig. 13. Figure 13, a
shows a premature adhesion failure due to the accumulation of stress at the scratch
edges to the ternary coating growth with the lowest bias voltage (0 V) in relation to
V–C–N coating deposited with the highest applied negative bias voltage (see Fig.
13, d).
L
C2
L
C1
1.3 mm
100×
a
L
C2
L
C1
1.3 mm
100×
b
L
C2
L
C1
1.3 mm
100×
c
L
C2L
C1
1.3 mm
100×
d
Fig. 13. SEM micrographs of scratch tracks: 0 (a), –40 (b), –70 (c), –100 (d) V deposited onto
industrial AISI 8620 steel.
Further away from scratch, conformal cracking of the layer associated with ad-
hesive failure (LC2) appears in a single layer coating with a relative low bias volt-
age. But unlike the last discussion, the coatings deposited with –100 V presented
‘‘Recovery Spallation’’ type wear mechanisms (see Fig. 13, d). These series of
ternary coatings showed a failure behavior type ‘‘Buckling Cracks’’ that is
characteristic of protective systems where the substrate is ductile and hard coatings
have good adhesion between them, these systems generate compressive stress that
are characteristic of cracks buckling failure mode [4, 31].
It was found that the highest values of hardness and elastic modulus, 29 and
261 GPa, respectively, were observed for V–C–N coating growth with (–100 V)
bias voltage. The enhancement in the hardness value of the metal ceramic coating
stack was attributed to high density that blocking the micro-crack movements
across the boundaries grain due to the reduction of the pores occurrences; together
with the Hall-Petch models, which gives a good overall picture of the hardness
enhancements.
Furthermore, the tribological performance for V–C–N coating with critical
loads in adhesive failure of 35 N and friction coefficient of 0.19 were observed for
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 77
the ternary metal ceramic material deposited with a bias voltage of –100 V. From
the SEM micrographs, it was determined that for the single layer coatings different
types of adhesive layer/substrate failures appear under strong plastic deformation
conditions, which is important for the preparation of wear resistant cutting and
forming tools and mechanical devices used in industrial applications.
CONCLUSIONS
The applied r.f. negative bias voltage in the ternary V–C–N coatings was varied
from 0 to –100 V generating a slightly shift of the peak positions to lower angles,
due to the increase in the tensile residual stress at higher voltages. The r.f. bias
application induces important formation of crystallographic phases with similar
intensity such as fcc (111) and (200).
The chemical, morphological, and mechanical characteristics and properties are
strongly related to the applied negative bias voltage, therefore, the evolution in the
dynamical surface and physical properties have been found when the bias voltage
was applied on V–C–N material around –100 V (hardness – 30 GPa and elastic
modulus – 260 GPa).
The lowest critical load in the coatings was found when a r.f. negative bias of
–100 V was applied, observing thus an enhancement of the tribological properties
by reduction of the friction coefficient in 60 % for V–C–N coatings when both
coatings were compared with the same deposited 0 V, therefore, a high critical load
for adhesive failure was obtained in coatings due to two factors: growth with the
highest negative bias voltage, which produce the increase of the density, and there-
fore, improve the mechanical properties (hardness and elastic modulus) which can
be used in manufacture industry (e.g. tools for High Efficiency Machining).
ACKNOWLEDGEMENTS
This research was supported by Universidad Militar Nueva Granada, contract
number ING-1775-2015, Universidad del Quindío and the CIC biomaGUNE,
Platform Manager – Surface Analysis and Fabrication, Spain.
Метою роботи було визначення механічної та трибологічної поведінки
V–C–N-покриттів, осаджених на сталеві (AISI 8620) підкладки, для використання як
захисні матеріали. Покриття осаджували на кремнієві (100) і сталеві підкладки магне-
тронним напиленням при зміні напруги зміщення. Дослідження за допомогою
рентгенівської дифракції показали, що V–C–N-покриття мали кристалографічну
орієнтацію (111) для ГЦК V–C–N-структури, утвореної VC (111) і VN (111) фазами, і
(200) для ГЦК V–C–N-структури, утвореної VC (200) і VN (200) фазами. Рентгенівська
фотоелектронна спектроскопія була використана для визначення хімічного складу мета-
левих вуглець-нітридних матеріалів. Для визначення зернистості і шорсткості при зміні
параметрів осадження була використана атомно-силова мікроскопія. З використанням
наноіндентування, методу “диск–стрижень” і кривих склерометричних випробувань
оцінювали твердість, тертя і критичне навантаження матеріалу поверхні V–C–N. Рас-
трову електронну мікроскопію використовували для аналізу змін морфології поверхонь.
Дослідження механічних та трибологічних характеристик системи VCN/сталь[8620] як
функції напруги зсуву показали збільшення твердості на 58 % і зменшення коефіцієнта
тертя на 39 %, звідки випливає, що V–C–N-покриття можуть бути перспективними для
застосування в промисловості.
Ключові слова: поверхня, зростання кристала, фізичне осадження з
парової фази, механічне випробування, трибологія і знос.
Целью работы было определение механического и трибологического
поведения V–C–N-покрытий, осажденных на стальные (AISI 8620) подложки, для исполь-
зования как защитные материалы. Покрытия осаждали на кремниевые (100) и стальные
www.ism.kiev.ua/stm 78
подложки магнетронным напылением при изменении напряжения смещения. Исследова-
ния с помощью рентгеновской дифракции показали, что V–C–N-покрытия имели кри-
сталлографическую ориентацию (111) для ГЦК V–C–N-структуры, образованной VC
(111) и VN (111) фазами, и (200) для ГЦК V–C–N-структуры, образованной VC (200) и VN
(200) фазами. Рентгеновская фотоэлектронная спектроскопия была использована для
определения химического состава металлических углерод-нитридных материалов. Для
определения зернистости и шероховатости при изменении параметров осаждения была
использована атомно-силовая микроскопия. С использованием наноиндентирования, ме-
тода “стержень–диск” и кривых склерометрических испытаний оценивали твердость,
трение и критическую нагрузку материала поверхности V–C–N. Растровую электронную
микроскопию использовали для анализа изменений морфологии поверхностей. Исследова-
ния механических и трибологических характеристик системы VCN/сталь[8620] как функ-
ции напряжения смещения показали увеличение твердости на 58 % и уменьшение коэф-
фициента трения на 39 %, откуда следует, что V–C–N-покрытия могут быть перспек-
тивными для применения в промышленности.
Ключевые слова: поверхность, рост кристалла, физическое осаждение
из паровой фазы, механическое испытание, трибология и износ.
1. Silva E., Rebelo de Figueiredo M., Franz R. et al. Structure-property relations in ZrCN coat-
ings for tribological applications // Surf. Coat. Tech. – 2010. – 205. – P. 2134–2141.
2. Rodziňák D., Čerňan J., Hvizdoš P. Effect of TiCN coating on tribological properties of Asta-
loy CrL sintered steel // J. Manuf. Indust. Eng. – 2013. – N 12. – P. 20–24.
3. Kohjiro S., Kiryu S., Shoj A. Surface resistance of epitaxial and polycrystalline NbCN films in
submillimeter wave region // Transact. Appl. Supercon. – 1993. – N 3. – P. 1765–1767.
4. Cabrera G., Caicedo J. C., Amaya C. et al. Enhancement of mechanical and tribological
properties in AISI D3 steel substrates by using a non-isostructural CrN/AlN multilayer coat-
ing // Mater. Chem. Phys. – 2011. – 125. – P. 576–586.
5. Kurt B., Onder E., Carboga C., Demirel B. Characterization and kinetics of VC coatings on
AISI D3 steel performed by thermo-reactive diffusion technique // Pract. Metallogr. – 2014. –
51. – P. 42–44.
6. Farges G., Beauprez E., Degout D. Preparation and characterization of VN films deposited by
reactive triode magnetron sputtering // Surf. Coat. Tech. – 1992. – 55. – P. 115–120.
7. Caicedo J. C., Zambrano G., Aperador W. et al. Mechanical and electrochemical characteri-
zation of vanadium nitride (VN) thin films // Appl. Surf. Sci. – 2011. – 258. – P. 312– 320.
8. Grigore E., Ruset C., Luculescu C. The structure and properties of VN–VCN–VC coatings
deposited by a high energy ion assisted magnetron sputtering method // Surf. Coat. Tech. –
2011. – 205. – P. S29–S32.
9. Mitterer C., Fateh N., Munnik F. Microstructure–property relations of reactively magnetron
sputtered VCxNy films // Ibid. – 2011. – 205, N 13–14. – P. 3805–3809.
10. Heo S. Y., Shin J. H., Kim D.-I. et al. Microstructure and mechanical properties of Cr–V–C–N
films // Surf. Eng. – 2015. – 31. – P. 513–518
11. Fateh N., Fontalvo G. A., Gassner G., Mitterer C. Influence of high-temperature oxide for-
mation on the tribological bahaviour of TiN and VN coatings // Wear. – 2007. – 262. –
P. 1152–1158.
12. Hanumantha P. J., Datta M. K., Kadakia K. S. et al. A simple low temperature synthesis of
nanostructured vanadium nitride for supercapacitor applications // J. Electrochem. Soc. –
2013. – 160, N 11. – P. 2195–2206.
13. Laurent F., Michel P., Feurer R. et al. New organometallic route to vanadium carbonitride
thin films // J. Mater. Chem. – 1993. – 3, N 6. – P. 659–663.
14. Gonçalves G., Vila M., Bdikin I. et al. Breakdown into nanoscale of graphene oxide: Con-
fined hot spot atomic reduction and fragmentation // Nature Sci. Rep. – 2014. – N 4,
art. 6735.
15. Junbo L. I., Xiwen L., Cancan C. et al. Silica-gel supported V complexes: preparation, char-
acterization and catalytic oxidative desulfurization // Chinese J. Chem. Eng. – 2013. – 21,
N 8. – P. 860–866.
16. Bacal M., Perrière J., Tanguy M. et al. Study of carbon nitride films deposited using a Hall-
type ion source // J. Phys. D: Appl. Phys. – 2000. – 33, art. 2373.
17. Franz R., Neidhard J., Sartory B. et al. Micro- and bonding structure of arc-evaporated
AlCrVN hard coatings // Thin Solid Films. – 2008. – 516. – P. 6151–6157.
ISSN 0203-3119. Сверхтвердые материалы, 2016, № 5 79
18. Grigore E., Ruset C., Luculescu C. The structure and properties of VN–VCN–VC coatings
deposited by a high energy ion assisted magnetron sputtering method // Surf. Coat. Tech. –
2011. – 205. – P. 29–32.
19. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic
modulus using load and displacement sensing indentation experiments // J. Mater. Res. –
1992. – 7, N 6. – P. 1564–1583.
20. Caicedo J. C., Yate L., Montes J. Improving the physicochemical surface properties on AISI
D3 steel coated with Ti–W–N // Ibid. – 2011. – 205. – P. 2947–2953.
21. Wiora M., Brühne K., Flöter A. et al. Grain size dependent mechanical properties of
nanocrystalline diamond films grown by hot-filament CVD // Diamond Relat. Mater. – 2009.
– 18. – P. 927–930.
22. Hiroshi G., Masahide G., Shoichi E. et al. Scratch test of TiCN thin films with different
preferred orientation // Mater. Sci. Forum. – 2006. – 524. – P. 729–734.
23. Gupta S., Glocker D., Romach M. Nanoindentation and X-ray diffraction study of sputtered
TiCN coatings // Microsc. Microanal. – 2004. – 10. – P. 602–603.
24. Yashar P. C., Sproul W. D. Nanometer scale multilayered hard coatings // Vacuum. – 1999. –
55. – P. 179–190.
25. Caicedo J. C., Aperador W., Caicedo H. H. Physical and tribological diagnostic of Ti–
(Carbon Nitrides) and Ti–Nb–(Carbon Nitrides) coatings // J. Mech. Sci. Tech. – 2014. – 28,
N 2. – P. 489–497.
26. Kim Gwang S., Lee Sang Y., Hahn Jun H. Synthesis of CrN/AlN superlattice coatings using
closed-field unbalanced magnetron sputtering process // Surf. Coat. Tech. – 2003. – 171. –
P. 91–95.
27. Hajek V., Rusnak K., Vlcek J. et al. Tribological study of CNx films prepared by reactive d.c.
magnetron sputtering // Wear. – 1997. – 213. – P. 80.
28. Martínez E., Romero J., Lousa A., Esteve J. Nanoindentation stress-strain curves as a method
for thin-film complete mechanical characterization: application to nanometric CrN/Cr multi-
layer coatings // Appl. Phys. A. – 2003. – 77. – P. 419–426.
29. Holleck H., Lahres M., Woll P. Multilayer coatings – influence of fabrication parameters on
constitution and properties // Surf. Coat. Tech. – 1990. – 41. – P. 179–190.
30. Archard J. F. Contact and rubbing of flat surfaces // J. Appl. Phys. – 1953. – 24, N 8. –
P. 981.
31. Leyland A., Matthews A. On the significance of the H/E ratio in wear control: a nanocompo-
site coating approach to optimised tribological behaviour // Wear. – 2000. – 246. – P. 1–11.
32. Veprek S., Reiprich S. A. Concept for the design of novel superhard coatings // Thin Solid
Films. – 1995. – 268. – P. 64–71.
33. Podgornik B., Hogmark S., Sandberg O., Leskovsek V. Wear resistance and anti-sticking
properties of duplex treated forming tool steel // Wear. – 2003. – 254. – P. 1113–1121.
34. Holmberg K., Ronkainen H., Matthews A. Tribology of thin coatings // Ceram. Int. – 2000. –
26. – P. 787–795.
Received 09.11.15
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Off
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.1000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails true
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams true
/MaxSubsetPct 100
/Optimize false
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Remove
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages false
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth 8
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /FlateEncode
/AutoFilterColorImages false
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages false
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth 8
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /FlateEncode
/AutoFilterGrayImages false
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages false
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
/RUS ()
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|