Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term

The removability of an isolated singularity for solutions to the quasilinear equation is proved.

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Shan, M.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/145077
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term / M.A. Shan // Український математичний вісник. — 2016. — Т. 13, № 3. — С. 350-360. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-145077
record_format dspace
spelling irk-123456789-1450772019-01-15T01:23:28Z Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term Shan, M.A. The removability of an isolated singularity for solutions to the quasilinear equation is proved. 2016 Article Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term / M.A. Shan // Український математичний вісник. — 2016. — Т. 13, № 3. — С. 350-360. — Бібліогр.: 14 назв. — англ. 1810-3200 2010 MSC. 35B40 http://dspace.nbuv.gov.ua/handle/123456789/145077 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The removability of an isolated singularity for solutions to the quasilinear equation is proved.
format Article
author Shan, M.A.
spellingShingle Shan, M.A.
Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term
Український математичний вісник
author_facet Shan, M.A.
author_sort Shan, M.A.
title Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term
title_short Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term
title_full Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term
title_fullStr Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term
title_full_unstemmed Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term
title_sort removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term
publisher Інститут прикладної математики і механіки НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/145077
citation_txt Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term / M.A. Shan // Український математичний вісник. — 2016. — Т. 13, № 3. — С. 350-360. — Бібліогр.: 14 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT shanma removabilityofisolatedsingularityforsolutionsofanisotropicporousmediumequationwithabsorptionterm
first_indexed 2025-07-10T20:47:49Z
last_indexed 2025-07-10T20:47:49Z
_version_ 1837294399402278912
fulltext Український математичний вiсник Том 13 (2016), № 3, 350 – 360 Removability of isolated singularity for solutions of anisotropic porous medium equation with absorption term Maria A. Shan (Presented by I. I. Skripnik) Abstract. In this article we obtained the removability result for quasi- linear equations model of which is ut − n∑ i=1 ( umi−1uxi ) xi + f(u) = 0, u ≥ 0. 2010 MSC. 35B40. Key words and phrases. Quasilinear parabolic equations, removable isolated singularity. 1. Introduction and main result In this paper we study solutions to quasilinear parabolic equation in the divergent form ut − divA(x, t, u,∇u) + a0(u) = 0, (x, t) ∈ ΩT , (1.1) satisfying a initial condition u(x, 0) = 0, x ∈ Ω \ {(0, 0)} (1.2) in ΩT = Ω × (0, T ), 0 < T < ∞, where Ω is a bounded domain in Rn, n > 2. The qualitative behaviour of solution to elliptic equations was in- vestigated by many authors starting from the seminal papers of Serrin (see [4–8] ). In [1] Brezis and Veron proved that for q ≥ n n−2 the isolated singularities of solutions to the elliptic equation Received 05.09.2016 ISSN 1810 – 3200. c⃝ Iнститут математики НАН України M. A. Shan 351 −△u+ uq = 0, are removable. The result on the removability of an isolated singularity for the following parabolic equation ∂u ∂t −△u+ |u|q−1u = 0, (x, t) ∈ ΩT \ {(0, 0)} was obtained by Brézis and Friedman [2] in the case q ≥ n+2 n . The anisotropic elliptic equation with absorption − n∑ i=1 ( |uxi |pi−2uxi ) xi + |u|q−1u = 0 was studied in [12]. It was proved that the isolated singularity for solution of the this equation is removable if q ≥ n(p− 1) n− p , 1 ≤ p1 ≤ . . . ≤ pn ≤ n− 1 n− p p. For quasilinear elliptic and parabolic equations of special form with absorption similar questions were treated by many authors. A survey of their results and references can be found in Veron’s monograph [14]. The removability of isolated singularities for more general elliptic and parabolic equations with absorption were established in [10] and [11]. We suppose that the functions A = (a1, ..., an) and a0 satisfy the Caratheodory conditions and the following structure conditions hold A(x, t, u, ξ)ξ ≥ ν1 n∑ i=1 |u|mi−1|ξi|2, |ai(x, t, u, ξ)| ≤ ν2u mi−1 2  n∑ j=1 |u|mj−1|ξj |2  1 2 , i = 1, n, (1.3) a0(u) ≥ ν1f(u), with positive constants ν1, ν2 and continuous, positive function f(u) and min 1≤i≤n mi > 1, max 1≤i≤n mi ≤ 1 + κ n , p < n, (1.4) where κ = n(m − 1) + 2, d = 1 n n∑ i=1 mi 2 , and assume without loss, that mn = max 1≤i≤n mi. 352 Removability of isolated singularity for solutions... We will write V2,m(ΩT ) for the class of functions φ ∈ C(0, T, L2(Ω)) with n∑ i=1 ∫∫ ΩT |φ|mi−1 |φxi | 2 dxdt <∞. We say that u is a weak solution to the problem (1.1), (1.2) if for an arbitrary ψ ∈ C1(ΩT ), vanishing in a neighborhood of {(0, 0)}, we have an inclusion uψ ∈ V2,m(ΩT ) and for any interval (t1, t2) ⊂ [0, T ) the integral identity ∫ Ω uφdx ∣∣∣∣∣∣ t2 t1 + t2∫ t1 ∫ Ω {−uφt +A(x, t, u,∇u)∇φ+ a0(u)φ} dx dt = 0 (1.5) holds for φ = ζψ with an arbitrary ζ ∈ o V 2,m(ΩT ). We say that solution u to the problem (1.1), (1.2) has a removable singularity at {(0, 0)} if u can be extended to {(0, 0)} so that the extension ũ of u satisfies (1.5) with ψ ≡ 1 and ũ ∈ V2,m(ΩT ). Remark 1.1. Condition (1.4) implies the local boundedness of weak solutions to the equation (1.1) ([3]). The main result of this paper is the following theorem. Theorem 1.1. Let the conditions (1.3), (1.4) be fulfilled and u be a nonnegative weak solution to the problem (1.1), (1.2). Assume also that f(u) = uq and q ≥ m+ 2 n , (1.6) then the singularity at the point {(0, 0)} is removable. The rest of the paper contains the proof of Theorem 1.1. 2. Integral estimates of solutions For 0 ≤ λ < n we define the following numbers κ(λ) = 1 2 + (n− λ)(m− 1) , κi(λ) = 2 2 + (n− λ)(m−mi) , i = 1, n. Let ρλ(x, t) = ( t κ(λ) κ1(λ) + n∑ i=1 |xi| κi(λ) κ1(λ) )κ1(λ) , assume that Dλ(r) = {(x, t) : ρλ(x, t) < r}, Dλ(R0) ⊂ ΩT and for 0 < r < R0 we set M(r, λ) = sup Dλ(R0)\Dλ(r) u(x, t), E(r, λ) = {(x, t) ∈ M. A. Shan 353 ΩT : u(x, t) > M(r, λ)}, ur(r, t, λ) = (u(x, t) −M(r, λ))+ and consider the function ψr(x, t) = ηr(ρλ(x, t)), where ηr : R1 → R1 is a function taking the following values: ηr(z) = 0 if z ≤ r, ηr(z) = 1 if z ≥ R(r), ηr(z) = [ (1 − ε) ln ln 1 r ]−1 ( ln ln 1 r− ln ln 1 z ) , if r ≤ z ≤ R(r), here ε is a number from the interval (0, 1) specified in what follows and R(r) defined by the equality ln 1 R(r) = lnε 1 r . (2.1) Note that by the evident equalities 1 q−1 = (n− λ)κ(λ), 2 q−mi = (n− λ)κi(λ), i = 1, n, with λ ≥ 0 defined by λ = n− 2 q −m , (2.2) the Keller–Osserman estimate yields M(r, λ) ≤ γrλ−n, r > 0. (2.3) This estimate is received from Theorems 4.1, 4.2 (Appendix) in the case p1 = p2 = ... = pn = 2. Consider the functions F1(r, λ), F2(r, λ) defined by the following eq- ualities F1(r, λ) =  Rλ(r), λ > 0, ln q−2 q−1 1 r , λ = 0, q > 2, ln ln 1 r , λ = 0, q = 2, ln − 2−q q−1 , λ = 0, q < 2 F2(r, λ) =  Rλ(r), λ > 0, ln q−2m1 q−m1 1 r , λ = 0, q > 2m1, ln ln 1 r , λ = 0, q = 2m1, ln − 2m1−q 1−m1 , λ = 0, q < 2m1. To simplify the following calculations we will write M(r), E(r), ur(x, t) instead of M(r, λ), E(r, λ), ur(x, t, λ). Lemma 2.1. Let the assumptions of Theorem 1.1 be fulfilled, then for every l ≥ 2q q−mn and for every 2r < ρ ≤ R0 2 the following estimate holds 354 Removability of isolated singularity for solutions... sup 0<t<T ∫ E( ρ2 )×{t} u∫ M( ρ2 ) ln+ s M (ρ 2 )dsψlr dx+ n∑ i=1 ∫∫ E( ρ2 ) umi−2|uxi |2ψlrdxdt + ∫∫ E( ρ2 ) uq ln u M (ρ 2 )ψlrdxdt ≤ γ (F1(r, λ) + F2(r, λ)) . (2.4) Proof. Testing (1.5) by φ = ln+ u M( ρ2 ) ψlr, using (1.3) and the Young inequality we get sup 0<t<T ∫ E( ρ2 )×{t} u∫ M( ρ2 ) ln+ s M (ρ 2 )dsψlr dx+ n∑ i=1 ∫∫ E( ρ2 ) umi−2|uxi |2ψlrdxdt + ∫∫ E( ρ2 ) uq ln u M (ρ 2 )ψlrdxdt ≤ γ ∫∫ E( ρ2 ) u ln u M (ρ 2 ) ∣∣∣∣∂ψr∂t ∣∣∣∣ψl−1 r dxdt + γ n∑ i=1 ∫∫ E( ρ2 ) umi ln2 u M (ρ 2 ) ∣∣∣∣∂ψr∂xi ∣∣∣∣2 ψl−2 r dxdt. From this, by the Young inequality we obtain sup 0<t<T ∫ E( ρ2 )×{t} u∫ M( ρ2 ) ln+ s M (ρ 2 )dsψlr dx+ n∑ i=1 ∫∫ E( ρ2 ) umi−2|uxi |2ψlrdxdt + ∫∫ E( ρ2 ) uq ln u M (ρ 2 )ψlrdxdt ≤ γ ∫∫ E( ρ2 ) ln u M (ρ 2 ) ∣∣∣∣∂ψr∂t ∣∣∣∣ q q−1 dxdt +γ ∫∫ E( ρ2 ) ln 2q−mi q−mi u M (ρ 2 ) ∣∣∣∣∂ψr∂xi ∣∣∣∣ 2q q−mi dxdt = γ (J1 + J2) . (2.5) By (2.3) we have J1 + J2 ≤ γ ∫∫ Dλ(R(r))\Dλ(r) ln − 1 q−1 1 ρλ ρ − 1 κ(λ) q q−1 λ dxdt + γ n∑ i=1 ∫∫ Dλ(R(r))\Dλ(r) ln − mi q−mi 1 ρλ ρ − 2q κi(λ)(q−mi) λ dxdt M. A. Shan 355 ≤γ R(r)∫ r ln − 1 q−1 1 z zλ−1dz + γ R(r)∫ r ln − m1 q−m1 1 z zλ−1dz ≤γ (F1(r, λ) + F2(r, λ)) . (2.6) Combining (2.5), (2.6) we obtain (2.4), which completes the proof of the lemma. Define a function u(ρ)(x, t) and a set E (ρ 2 , 2ρ ) as follows u(ρ)(x, t) = min ( M (ρ 2 ) −M(2ρ), u2ρ(x, t) ) , E (ρ 2 , 2ρ ) = {x ∈ E(2ρ) : u < M (ρ 2 ) }. Lemma 2.2. Under the assumptions of Lemma 2.1 next inequality holds∫∫ E(2ρ) u(ρ)uqψlrdxdt ≤ γ ( M (ρ 2 ) −M(2ρ) ) × { F3(r, λ) + (F1(r, λ) + F2(r, λ)) 1 2F 1 2 4 (r, λ) } , (2.7) where F3(r, λ) =  Rλ(r), λ > 0, ln − 1 q−1 1 r , λ = 0, F4(r, λ) =  Rλ(r), λ > 0, ln−1 1 r , λ = 0. Proof. Testing (1.5) by φ = u(ρ)ψlr, using (1.3) and the Young inequality we get∫∫ E(2ρ) u(ρ)uqψlrdxdt ≤ γ ∫∫ E(2ρ) u(ρ) ∣∣∣∣∂ψr∂t ∣∣∣∣ q q−1 dxdt +γ n∑ i=1 ∫∫ E(2ρ)  n∑ j=1 umj−1|uxj |2  1 2 u mi−1 2 u(ρ) ∣∣∣∣∂ψr∂xi ∣∣∣∣ψl−1 r dxdt = γ (J3 + J4) . (2.8) By the Hölder inequality, (2.3) and Lemma 2.1 the integrals in the right-hand side of (2.8) are estimated as follows J3 ≤ γ ( M (ρ 2 ) −M(2ρ) )∫∫ E(2ρ) ∣∣∣∣∂ψr∂t ∣∣∣∣ q q−1 dxdt 356 Removability of isolated singularity for solutions... ≤ γ ( M (ρ 2 ) −M(2ρ) ) ∫ Dλ(R(λ))\Dλ(r) ln − q q−1 1 ρλ ρ − q (q−1)κ(λ) λ dxdt ≤γ ( M (ρ 2 ) −M(2ρ) )R(λ)∫ r ln − q q−1 1 z zλ−1dz≤γ ( M (ρ 2 ) −M(2ρ) ) F3(r, λ). (2.9) Similarly J4 ≤ γ ( M (ρ 2 ) −M(2ρ) ) n∑ i=1  n∑ j=1 ∫∫ E(2ρ) umj−2|uxj |2ψlrdxdt  1 2 × ∫∫ E(2ρ) umi ∣∣∣∣∂ψr∂xi ∣∣∣∣2 ψlrdxdt  1 2 ≤ γ ( M (ρ 2 ) −M(2ρ) ) × × (F1(r, λ) + F2(r, λ)) 1 2 n∑ i=1  ∫∫ Dλ(R(λ))\Dλ(r) ln−2 1 ρλ ρ −mi(n−λ)− 2 κi(λ) λ dxdt  1 2 ≤ γ ( M (ρ 2 ) −M(2ρ) ) (F1(r, λ) + F2(r, λ)) 1 2  R(r)∫ r ln−2 1 z zλ−1dz  1 2 ≤ γ ( M (ρ 2 ) −M(2ρ) ) (F1(r, λ) + F2(r, λ)) 1 2 F 1 2 4 (r, λ). (2.10) Combining (2.8)–(2.10) we arrive at the required (2.7), this proves the lemma. 2.1. Pointwise estimates of solutions Similarly to [13], using the De Giorgi type iteration, we prove the following estimate (M(ρ) −M(2ρ)1+m+mn+2 2 ≤ γ ( M (ρ 2 ) ρ − 1 κ(λ) + n∑ i=1 Mmi (ρ 2 ) ρ − 2 κi(λ) )n+2 2 ∫∫ Dλ(R0)\Dλ( ρ2 ) u1+m2ρ dxdt. M. A. Shan 357 Since u2ρ ≤ M (ρ 2 ) −M(2ρ) for (x, t) ∈ Dλ(R0) \Dλ (ρ 2 ) by the Hölder inequality and Lemma 2.2 we get (M(ρ) −M(2ρ)1+m+mn+2 2 ≤ γM m+1 q+1 (ρ 2 )( M (ρ 2 ) ρ − 1 κ(λ) + n∑ i=1 Mmi (ρ 2 ) ρ − 2 κi(λ) )n+2 2 × { F3(r, λ) + (F1(r, λ) + F2(r, λ)) 1 2F 1 2 4 (r, λ) } |Dλ(R0)| q−m q+1 . (2.11) In the inequality (2.11) we will pass to the limit as r → 0. By (2.1) the following relations are valid for λ = 0 F1(r, 0)F4(r, 0) = ln q−2 q−1 1 r ln−1 1 R(r) = ln q−2 q−1 −ε 1 r , if q > 2, F2(r, 0)F4(r, 0) = ln q−2m1 q−m1 1 r ln−1 1 R(r) = ln q−2m1 q−m1 −ε 1 r , if q > 2m1, choose ε from the condition max ( 1 2 , q−2 q−1 , q−2m1 q−m1 ) < ε < 1, now passing to the limit as r → 0 in (2.11) we obtain for any ρ ≤ R0 2 M(ρ) −M(2ρ) ≤ 0, iterating last inequality we get for any ρ ≤ R0 2 M(ρ) ≤M(R0), this proves the boundedness of solutions. 3. End of the proof of Theorem 1.1 Let K be a compact subset in Ω, and ξ = 0 in ∂Ω × (0, T ), such that ξ = 1 for (x, t) ∈ K × (0, T ). Testing (1.5) by φ = uξ2ψr, ψ = ψr, using conditions (1.3), the Young inequality, the boundedness of u and passing to the limit r → 0 we get sup 0<t<T ∫ K u2dx+ n∑ i=1 T∫ 0 ∫ K umi−1|uxi |2dxdt+ T∫ 0 ∫ K uq+1dxdt ≤ γ. (3.1) Testing (1.5) by φψr, where φ is an arbitrary function which belongs to o V 2,m(ΩT ), using (3.1), the boundedness of solution, and passing to the limit r → 0, we obtain the integral identity (1.5) with an arbitrary φ ∈ o V 2,m(Ωt) and ψ ≡ 1. Thus Theorem 1.1 is proved. 358 Removability of isolated singularity for solutions... 4. Appendix Let (x(0), t(0)) ∈ ΩT , for any τ, θ1, θ2, . . . , θn > 0, θ = (θ1, . . . , θn) we define Qθ,τ (x(0), t(0)) := {(x, t) : |t− t(0)| < τ, |xi − x (0) i | < θi, i = 1, n} and set M(θ, τ) := sup Qθ,τ (x(0),t(0)) u, δ(θ, τ) := sup Qθ,τ (x(0),t(0)) δ(u), Φ(θ, τ) := sup Qθ,τ (x(0),t(0)) Φ(u),Φ(u) = u∫ 0 φ(s)ds, φ(s) = smn−1f(s). We say that nondecreasing continuous function ψ satisfies the condi- tion (A) if for any ε ∈ (0, 1) there exists u0(ε) ≥ 1 such that ψ(εu) ≤ εµψ(u), (A) with some µ > 0 and for all u ≥ u0(ε). Theorem 4.1 ([9]). Let the conditions (1.3), (1.4) be fulfilled and u be a nonnegative weak solution to equation (1.1), assume also that f ∈ C1(R1 +) and f ′ (u) ≥ 0. Let (x(0), t(0)) ∈ ΩT , fix σ ∈ (0, 1), τ ∈ (0,min(θpnn , t(0), T−t(0))), θi ∈ (0, θn) for i ∈ I ′ = {i = 1, n : mi(pi−1) < mn(pn − 1)} and θi = θn for i ∈ I ′′ = {i = 1, n : mi(pi − 1) = mn(pn − 1)}, then there exist positive numbers c8, c9 depending only on n, ν1, ν2,m1, . . . ,mn, p1, . . . , pn such that either u(x(0), t(0)) ≤ (τ−1ρpn) 1 mn(pn−1)−1 + ∑ i∈I′ (θ−1 i θ pn pi n ) pi mn(pn−1)−mi(pi−1) , (4.1) or Φ(σθ, στ) ≤ c8(1 − σ)−c9θ−pnn δ(θ, τ)Mmnpn−1(θ, τ). (4.2) On the other hand, if I ′ is empty, i.e. m1(p1 − 1) = m2(p2 − 1) = · · · = mn(pn − 1), then either u(x(0), t(0)) ≤ (τ−1θpnn ) 1 mn(pn−1)−1 , (4.3) or (4.2) holds true. Theorem 4.2 ([9]). Let the conditions (1.3), (1.4) be fulfilled, u be a nonnegative weak solution to (1.1), f ∈ C1(R1 +) and f ′ (u) ≥ 0. Let ∂ΩT be the parabolic boundary of ΩT , assume also that lim (x,t)→∂ΩT u(x, t) = +∞ and with some 0 ≤ a ≤ 1 and c > 0 there holds δ(u) ≤ cua. M. A. Shan 359 Let ψ(u) = u−1Φ 1 mnpn+a−1 (u) satisfies condition (A). Let (x(0), t(0)) ∈ ΩT and 8ρ = dist(x(0), ∂Ω). Fix τ ∈ (0,min(ρpn , t(0), T−t(0))) and θi ∈ (0, ρ) for i ∈ I ′ , then there exists a positive number c10 depending only on n, ν1, ν2,m1, ...,mn, p1, ..., pn and c, such that either (4.1) holds, or Φ(u(x(0), t(0))) ≤ c10θ −pn n umnpn+a−1(x(0), t(0)). (4.4) On the other hand if I ′ is empty, i.e. m1(p1 − 1) = m2(p2 − 1) = ... = mn(pn − 1) and ψ(u) = u−1Φ 1 mnpn+a−1 (u) satisfies condition (A), then either (4.3) holds, or (4.4) holds true. Acknowledgements This work is supported by grant of Ministry of Education and Science of Ukraine (project number is 0115 U 000 136) and it is based on the re- search provided by the grant support of the State Fund For Fundamental Research (project number is 0116U007160). References [1] H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equa- tions // Arch. Rational Mech. Anal., 75 (1980), No. 1, 1–6. [2] H. Brezis, A. Friedman, Nonlinear parabolic equations involving measure as initial conditions // J. Math. Pures Appl., 62 (1983), 73–97. [3] I. M. Kolodij, On boundedness of generalized solutions of parabolic differential equations // Vestnik Moskov. Gos. Univ., 5 (1971), 25–31. [4] J. Serrin, Local behaviour of solutions of quasilinear equations // Acta Math., 111 (1964), 247–302. [5] J. Serrin, Singularities of solutions of nonlinear equations // Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, RI, 68–88, 1965. [6] J. Serrin, Removable singularities of solutions of elliptic equations // II. Arch. Rational Mech. Anal., 20 (1965), 163–169. [7] J. Serrin, Removable singularities of solutions of elliptic equations // Arch. Ra- tional Mech. Anal., 17 (1964), 67–78. [8] J. Serrin, Isolated singularities of quasi-linear equations // Acta Math., 113 (1965), 219–240. [9] M. O. Shan, I. I. Skrypnik, Keller–Osserman a priori estimates and the Harnack inequality for quasilinear elliptic and parabolic equations with absorption term // Nonlinear Anal. [to appear]. [10] I. I. Skrypnik, Local behaviour of solutions of quasilinear elliptic equations with absorption // Trudy Inst. Mat. Mekh. Nats. Akad. Nauk Ukrainy, 9 (2004), 183– 190. [11] I. I. Skrypnik, Removability of isolated singularities of solutions of quasilinear parabolic equations with absorption // Mat. Sb., 196 (2005), No. 11, 141–160; English transl. in Sb. Math., 196 (2005), No. 11, 1693–1713. 360 Removability of isolated singularity for solutions... [12] I. I. Skrypnik, Removability of an isolated singularity for anisotropic elliptic equations with absorption // Mat. Sb., 199 (2008), No. 7, 85–102. [13] I. I. Skrypnik, Removability of isolated singularity for anisotropic parabolic equa- tions with absorption // Manuscr. Math, 140 (2013), 145–178. [14] L. Veron, Singularities of Solution of Second Order Quasilinear Equations, Pitman Research Notes in Mathematics Series, Longman, Harlow, 1996. Contact information Maria Alekseevna Shan Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine E-Mail: shan_maria@ukr.net