On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k))))

In this paper a solution of some difference equation was investigated.

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Simsek, D., Abdullayev, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2016
Назва видання:Український математичний вісник
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/145079
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k)))) / D. Simsek, F. Abdullayev // Український математичний вісник. — 2016. — Т. 13, № 3. — С. 376-387. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-145079
record_format dspace
spelling irk-123456789-1450792019-01-15T01:23:36Z On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k)))) Simsek, D. Abdullayev, F. In this paper a solution of some difference equation was investigated. 2016 Article On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k)))) / D. Simsek, F. Abdullayev // Український математичний вісник. — 2016. — Т. 13, № 3. — С. 376-387. — Бібліогр.: 26 назв. — англ. 1810-3200 2010 MSC. 39A10, 39A14, 39A20. http://dspace.nbuv.gov.ua/handle/123456789/145079 en Український математичний вісник Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper a solution of some difference equation was investigated.
format Article
author Simsek, D.
Abdullayev, F.
spellingShingle Simsek, D.
Abdullayev, F.
On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k))))
Український математичний вісник
author_facet Simsek, D.
Abdullayev, F.
author_sort Simsek, D.
title On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k))))
title_short On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k))))
title_full On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k))))
title_fullStr On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k))))
title_full_unstemmed On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k))))
title_sort on the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k))))
publisher Інститут прикладної математики і механіки НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/145079
citation_txt On the recursive sequence x(n+1)=(x(n-(4k+3)))/(1+∏(t=0-2(x(n-(k+1)t-k)))) / D. Simsek, F. Abdullayev // Український математичний вісник. — 2016. — Т. 13, № 3. — С. 376-387. — Бібліогр.: 26 назв. — англ.
series Український математичний вісник
work_keys_str_mv AT simsekd ontherecursivesequencexn1xn4k31t02xnk1tk
AT abdullayevf ontherecursivesequencexn1xn4k31t02xnk1tk
first_indexed 2025-07-10T20:48:08Z
last_indexed 2025-07-10T20:48:08Z
_version_ 1837294416507699200
fulltext Український математичний вiсник Том 13 (2016), № 3, 376 – 387 On the recursive sequence xn+1 = xn−(4k+3) 1+ 2∏ t=0 xn−(k+1)t−k Dağıstan Simsek and Fahreddin Abdullayev Abstract. In this paper a solution of the following difference equation was investigated xn+1 = xn−(4k+3) 1 + 2∏ t=0 xn−(k+1)t−k , n = 0, 1, 2, . . . where x−(4k+3), x−(4k+2), . . . , x−1, x0 ∈ (0,∞) and k = 0, 1, . . . . 2010 MSC. 39A10, 39A14, 39A20. Key words and phrases. Difference equation, period 4k+4 solution. 1. Introduction Difference equations appear naturally as discrete analogues and as numerical solutions of differential and delay differential equations having applications in biology, ecology, physics, etc [26]. Recently there has been a lot of interest in studying the periodic na- ture of nonlinear difference equations. For some recent result concerning among other problems, the periodic nature of scalar nonlinear difference equations see, for examples [1–26]. Cinar, studied the following problems with positive initial values xn+1 = xn−1 1 + axnxn−1 xn+1 = xn−1 −1 + axnxn−1 xn+1 = axn−1 1 + bxnxn−1 Received 28.08.2016 ISSN 1810 – 3200. c⃝ Iнститут математики НАН України D. Simsek, F. Abdullayev 377 for n = 0, 1, 2, . . . , in [2, 3, 4], respectively. In [18] Stevic assumed that β = 1 and solved the following problem xn+1 = xn−1 1 + xn for n = 0, 1, 2, . . . where x−1, x0 ∈ (0,∞). Also, this result was generalized to the equation of the following form: xn+1 = xn−1 g(xn) for n = 0, 1, 2, . . . where x−1, x0 ∈ (0,∞). In [19, 20, 21] studied the following problems with positive initial values: xn+1 = xn−3 1 + xn−1 , xn+1 = xn−5 1 + xn−2 , xn+1 = xn−5 1 + xn−1xn−3 for n = 0, 1, 2, . . . , respectively. In this paper we investigate the following nonlinear difference equation xn+1 = xn−(4k+3) 1 + 2∏ t=0 xn−(k+1)t−k for n = 0, 1, 2, . . . (1) where x−(4k+3), x−(4k+2), . . . , x−1, x0 and k = 0, 1, . . . . 2. Main result Theorem 2.1. Consider the difference equation (1). Then the following statements are true. a) The sequences (x(4k+4)n−(4k+3)), (x(4k+4)n−(4k+2)), . . . , (x(4k+4)n) are decreasing and there exists a1, a2, . . . , a4k+4 > 0 such that lim n→∞ x(4k+4)n−(4k+3)+t = a1+t, t = 0, 1, . . . , (4k + 3). b) (a1, a2, . . . , a4k+4, a1, a2, . . . , a4k+4, . . . ) is a solution of equation (1) of period 4k+4. c) 3∏ t=0 lim n→∞ x(4k+4)n−(k+1)t−k = 0, . . . , 3∏ t=0 lim n→∞ x(4k+4)n−(k+1)t = 0 or 378 On the recursive sequence. . . 3∏ t=0 a(k+1)t+1 = 0, . . . , 4∏ t=1 a(k+1)t = 0. d) If there exists n0 ∈ N such that 2∏ t=0 xn−(k+1)t−k ≥ xn+1 1∏ t=0 xn−(k+1)t−k for all n > n0, then lim n→∞ xn = 0. e) The following formulas x(4k+4)n+r(k+1)+s+1 = x(r−4)(k+1)+s+1 1 − ( 4∏ m=1 x−(mk+m−1)+s ) / x(r−4)(k+1)+s+1 1 + ( 3∏ m=1 x−(mk+m−1)+s) × n∑ j=0 4j+r∏ i=1 1 1 + 3∏ m=1 x(k+1)i−(mk+m−1)+s  , where r = 0, 1, 2, 3 and s = 0, 1, . . . , k hold. f) If x(4k+4)n+(t−1)k+t → at ̸= 0, (t = 1, 2, 3) then x(4k+4)n+3k+4 → 0 as n → ∞, . . . . If x(4k+4)n+tk+t → atk+t ̸= 0, (t = 1, 2, 3) then x(4k+4)n+4k+4 → 0 as n→ ∞. Proof. a) Firstly, from the equation (1), we obtain xn+1(1 + xn−kxn−(2k+1)xn−(3k+2)) = xn−(4k+3). If xn−k, xn−(2k+1), xn−(3k+2) ∈ (0,+∞), then (1 + xn−kxn−(2k+1)xn−(3k+2)) ∈ (1,+∞). Since xn+1 < xn−(4k+3), n ∈ N , we obtain that there exist lim n→∞ x(4k+4)n−(4k+3)+t = a1+t, t = 0, 1, . . . , (4k + 3). b) (a1, a2, . . . , a4k+4, a1, a2, . . . , a4k+4, . . . ) is a solution of equation (1) of period 4k + 4. D. Simsek, F. Abdullayev 379 c) In view of the equation (1), we obtain x(4k+4)n+1 = x(4k+4)n−(4k+3) 1 + 2∏ t=0 x(4k+4)n−(k+1)t−k . Taking limits as n→ ∞ on both sides of the above equality, we get lim n→∞ x(4k+4)n+1 = lim n→∞ x(4k+4)n−(4k+3) 1 + 2∏ t=0 x(4k+4)n−(k+1)t−k . Then 3∏ t=0 lim n→∞ x(4k+4)n−(k+1)t−k = 0 or 3∏ t=0 a(k+1)t+1 = 0. Similarly, 3∏ t=0 lim n→∞ x(4k+4)n−(k+1)t = 0 or 4∏ t=1 a(k+1)t = 0. d) If there exists n0 ∈ N such that xn−kxn−(2k+1)xn−(3k+2) ≥ xn+1xn−kxn−(2k+1) for all n > n0, then a1 ≤ ak+2 ≤ a2k+3 ≤ a3k+4 ≤ a1, . . . , ak+1 ≤ a2k+2 ≤ a3k+3 ≤ a4k+4 ≤ ak+1. Since 3∏ t=0 a(k+1)t+1 = 0, . . . , 4∏ t=1 a(k+1)t = 0, we obtain the result. e) Subracting xn−(4k+3) from the left and right-hand sides in equation (1) we obtain xn+1 − xn−(4k+3) = 1 1 + xn−kxn−(2k+1)xn−(3k+2) (xn−k − xn−(5k+4)), and the following formula for n ≥ k + 1  x(k+1)n−((k+1)2−1) − x(k+1)n−[(k+2)2+2k] = (x1 − x−(4k+3)) n−(k+1)∏ i=1 1 1+ 2∏ t=0 x(k+1)i−(k+1)t−k . . . x(k+1)n−((k+1)2−(k+1)) − x(k+1)n−[(k+2)2+k] = (xk+1 − x−(3k+3)) n−(k+1)∏ i=1 1 1+ 2∏ t=0 x(k+1)i−(k+1)t (2) 380 On the recursive sequence. . . holds. Replacing n by 4j in (2) and summing from j = 0 to j = n we obtain x(4k+4)n+1 − x−(4k+3) = (x1 − x−(4k+3)) n∑ j=0 4j∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k (3) . . . x(4k+4)n+k+1 − x−(3k+3) = (xk+1 − x−(3k+3)) n∑ j=0 4j∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t . Also, replacing n by 4j + 1 in (2) and summing from j = 0 to j = n we obtain x(4k+4)n+k+2−x−(3k+2) = (x1−x−(4k+3)) n∑ j=0 4j+1∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k , (4) . . . x(4k+4)n+2k+2 − x−(2k+2) = (xk+1 − x−(3k+3)) n∑ j=0 4j+1∏ i=1 1 1+ 2∏ t=0 x(k+1)i−(k+1)t . Also, replacing n by 4j + 2 in (2) and summing from j = 0 to j = n we obtain x(4k+4)n+2k+3 − x−(2k+1) = (x1 − x−(4k+3)) n∑ j=0 4j+2∏ i=1 1 1+ 2∏ t=0 x(k+1)i−(k+1)t−k , (5) . . . x(4k+4)n+3k+3 − x−(k+1) = (xk+1 − x−(3k+3)) n∑ j=0 4j+2∏ i=1 1 1+ 2∏ t=0 x(k+1)i−(k+1)t . D. Simsek, F. Abdullayev 381 Also, replacing n by 4j + 3 in (2) and summing from j = 0 to j = n we obtain x(4k+4)n+3k+4 − x−(k) = (x1 − x−(4k+3)) n∑ j=0 4j+3∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k , (6) . . . x(4k+4)n+4k+4 − x0 = (xk+1 − x−(3k+3)) n∑ j=0 4j+3∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t . Now, we obtained of the above formulas; x(4k+4)n+r(k+1)+s+1 = x(r−4)(k+1)+s+1 1 − ( 4∏ m=1 x−(mk+m−1)+s ) / x(r−4)(k+1)+s+1 1 + ( 3∏ m=1 x−(mk+m−1)+s) × n∑ j=0 4j+r∏ i=1 1 1 + 3∏ m=1 x(k+1)i−(mk+m−1)+s  where r = 0, 1, 2, 3 and s = 0, 1, . . . , k hold. f) Suppose that a1 = ak+2 = a2k+3 = a3k+4 = 0. By (e) we have lim n→∞ x(4k+4)n+1 = lim n→∞ x−(4k+3) 1 − 2∏ t=0 x−(k+1)t−k 1 + 2∏ t=0 x−(k+1)t−k × n∑ j=0 4j∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k  . 382 On the recursive sequence. . . a1 = x−(4k+3) 1 − 2∏ t=0 x−(k+1)t−k 1 + 2∏ t=0 x−(k+1)t−k ∞∑ j=0 4j∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k  , a1 = 0 ⇒ 1 + 2∏ t=0 x−(k+1)t−k 2∏ t=0 x−(k+1)t−k = ∞∑ j=0 4j∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k . (7) Similarly, lim n→∞ x(4k+4)n+k+2 = lim n→∞ x−(3k+2) 1 − ( 3∏ t=0 x−(k+1)t−k)/x−(3k+2) 1 + 2∏ t=0 x−(k+1)t−k n × ∑ j=0 4j+1∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k  . ak+2 = 0 ⇒ 1+ 2∏ t=0 x−(k+1)t−k ( 3∏ t=0 x−(k+1)t−k)/x−(3k+2) = ∞∑ j=0 4j+1∏ i=1 1 1+ 2∏ t=0 x(k+1)i−(k+1)t−k . (8) Similarly, a2k+3 = x−(2k+1) 1 − ( 3∏ t=0 x−(k+1)t−k)/x−(2k+1) 1 + 2∏ t=0 x−(k+1)t−k ∞ × ∑ j=0 4j+2∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k  , a2k+3 = 0 ⇒ 1 + 2∏ t=0 x−(k+1)t−k ( 3∏ t=0 x−(k+1)t−k)/x−(2k+1) D. Simsek, F. Abdullayev 383 = ∞∑ j=0 4j+2∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k . (9) Similarly, lim n→∞ x(4k+4)n+3k+4 = lim n→∞ x−(k) 1 − ( 3∏ t=0 x−(k+1)t−k)/x−k 1 + 2∏ t=0 x−(k+1)t−k n × ∑ j=0 4j+3∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k  a3k+4 = x−(k) 1 − ( 3∏ t=0 x−(k+1)t−k)/x−k 1 + 2∏ t=0 x−(k+1)t−k × ∞∑ j=0 4j+3∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k  , a3k+4 = 0 ⇒ 1 + 2∏ t=0 x−(k+1)t−k ( 3∏ t=0 x−(k+1)t−k)/x−k = ∞∑ j=0 4j+3∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k . (10) From the equation (7) and (8), 1 + 2∏ t=0 x−(k+1)t−k 2∏ t=0 x−(k+1)t−k = ∞∑ j=0 4j∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k (11) 384 On the recursive sequence. . . > 1 + 2∏ t=0 x−(k+1)t−k ( 3∏ t=0 x−(k+1)t−k)/x−(3k+2) = ∞∑ j=0 4j+1∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k thus x−(4k+3) > x−(3k+2). From the equation (8) and (9), 1 + 2∏ t=0 x−(k+1)t−k ( 3∏ t=0 x−(k+1)t−k)/x−(3k+2) = ∞∑ j=0 4j+1∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k > 1 + 2∏ t=0 x−(k+1)t−k ( 3∏ t=0 x−(k+1)t−k)/x−(2k+1) = ∞∑ j=0 4j+2∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k , (12) thus, x−(3k+2) > x−(2k+1). From the equation (9) and (10), 1 + 2∏ t=0 x−(k+1)t−k ( 3∏ t=0 x−(k+1)t−k)/x−(2k+1) = ∞∑ j=0 4j+2∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k > 1 + 2∏ t=0 x−(k+1)t−k ( 3∏ t=0 x−(k+1)t−k)/x−k = ∞∑ j=0 4j+3∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t−k (13) thus, x−(2k+1) > x−k, x−(4k+3) > x−(3k+2) > x−(2k+1) > x−k. We arrive at a conradiction. Suppose that ak+1 = a2k+2 = a3k+3 = a4k+4 = 0. From that the equation (14) in (e) follows, Proof of the equation (11) is similar and will be omitted. 1 + 2∏ t=0 x−(k+1)t 2∏ t=0 x−(k+1)t = ∞∑ j=0 4j∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t D. Simsek, F. Abdullayev 385 > 1 + 2∏ t=0 x−(k+1)t ( 3∏ t=0 x−(k+1)t)/x−(2k+2) = ∞∑ j=0 4j+1∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t , (14) thus, x−(3k+3) > x−(2k+2). From that the equation (15) in (e) follows, the proof of the equation (12) is similar and will be omitted. 1 + 2∏ t=0 x−(k+1)t ( 3∏ t=0 x−(k+1)t)/x−(2k+2) = ∞∑ j=0 4j+1∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t > 1 + 2∏ t=0 x−(k+1)t ( 3∏ t=0 x−(k+1)t)/x−(k+1) = ∞∑ j=0 4j+2∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t , (15) thus, x−(2k+2) > x−(k+1). From that the equation (16) in (e) follows, the proof of the equation (13) is similar and will be omitted. 1 + 2∏ t=0 x−(k+1)t ( 3∏ t=0 x−(k+1)t)/x−(k+1) = ∞∑ j=0 4j+2∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t > 1 + 2∏ t=0 x−(k+1)t ( 3∏ t=0 x−(k+1)t)/x0 = ∞∑ j=0 4j+3∏ i=1 1 1 + 2∏ t=0 x(k+1)i−(k+1)t (16) thus, x−(k+1) > x0, x−(3k+3) > x−(2k+2) > x−(k+1) > x0. We arrive at a conradiction which completes the proof of theorem. References [1] A. M. Amleh, E. A. Grove, G. Ladas, D. A. Georgiou, On the recursive sequence yn+1 = α+ yn−1 yn // J. Math. Anal. Appl., 233 (1999), 790–798. [2] C. Cinar, On the positive solutions of the difference equation xn+1 = xn−1 1+axnxn−1 // Appl. Math. Comp., 158 (3) (2004), 809–812. [3] C. Cinar, On the positive solutions of the difference equation xn+1 = xn−1 −1+axnxn−1 // Appl. Math. Comp., 158 (3) (2004), 793–797. 386 On the recursive sequence. . . [4] C. Cinar, On the positive solutions of the difference equation xn+1 = axn−1 1+bxnxn−1 // Appl. Math. Comp., 156 (3) (2004), 587–590. [5] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation xn+1 = axn− bxn cxn−dxn−1 // Advances in Difference Equation, Vol. 2006, Article ID 82579, (2006), 1–10. [6] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Qualitative behavior of higher order difference equation // Soochow Journal of Mathematics, 33 (4) (2007), 861–873. [7] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Global attractivity and periodic character of a fractional difference equation of order three // Yokohama Mathe- matical Journal, 53 (2007), 89–100. [8] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation xn+1 = αxn−1 β+γ k∏ i=0 xn−i // J. Conc. Appl. Math., 5(2) (2007), 101–113. [9] E. M. Elabbasy, E. M. Elsayed, On the Global Attractivity of Difference Equation of Higher Order // Carpathian Journal of Mathematics, 24 (2) (2008), 45–53. [10] E. M. Elsayed, On the Solution of Recursive Sequence of Order Two // Fasciculi Mathematici, 40 (2008), 5–13,. [11] E. M. Elsayed, Dynamics of a Recursive Sequence of Higher Order // Communi- cations on Applied Nonlinear Analysis, 16(2) (2009), 37–50. [12] E. M. Elsayed, Solution and atractivity for a rational recursive sequence // Dis- crete Dynamics in Nature and Society, Vol. 2011, Article ID 982309, 17 p., 2011. [13] E. M. Elsayed, On the solution of some difference equation // Europan Journal of Pure and Applied Mathematics, 4 (3) (2011), 287–303. [14] E. M. Elsayed, On the Dynamics of a higher order rational recursive sequence // Communications in Mathematical Analysis, 12 (1) (2012), 117–133. [15] E. M. Elsayed, Solution of rational difference system of order two // Mathemat- ical and Computer Modelling, 55 (2012), 378–384. [16] C. H. Gibbons, M. R. S. Kulenović, G. Ladas, On the recursive sequence xn+1 = α+βxn−1 χ+xn // Math. Sci. Res. Hot-Line, 4 (2000), No. 2, 1–11. [17] M.R.S. Kulenović, G. Ladas, W. S. Sizer, On the recursive sequence xn+1 = αxn+βxn−1 χxn+δxn−1 // Math. Sci. Res. Hot-Line, 2 (1998), No. 5, 1–16. [18] S. Stevic, On the recursive sequence xn+1 = xn−1 g(xn) // Taiwanese J. Math., 6 (2002), No. 3, 405–414. [19] D. Şimşek, C. Çınar, I. Yalçınkaya, On the recursive sequence xn+1 = xn−3 1+xn−1 // Int. J. Contemp. Math. Sci., 1 (2006), No. 9-12, 475–480. [20] D. Şimşek, C. Çınar, R. Karataş, I. Yalçınkaya, On the recursive sequence xn+1 = xn−5 1+xn−2 // Int. J. Pure Appl. Math., 27 (2006), No. 4, 501–507. [21] D. Şimşek, C. Çınar, R. Karataş, I. Yalçınkaya, On the recursive sequence xn+1 = xn−5 1+xn−1xn−3 // Int. J. Pure Appl. Math., 28 (2006), No.1, 117–124. [22] D. Şimşek, C. Çınar, I. Yalçınkaya, On The Recursive Sequence x(n+1) = x[n- (5k+9)] / 1+x(n-4)x(n-9) . . . x[n-(5k+4)] // Taiwanese Journal of Mathematics, 12 (2008), No.5, 1087–1098. D. Simsek, F. Abdullayev 387 [23] D. Şimşek, A. Doğan , On A Class of Recursive Sequence // Manas Journal of Engineering, 2 (2014), No. 1, 16–22. [24] I. Yalcinkaya, B. D. Iricanin, C. Cinar, On a max-type difference equation // Discrete Dynamics in Nature and Society, Vol. 2007, Article ID 47264, 10 p., doi: 1155/2007/47264, 2007. [25] H. D. Voulov, Periodic solutions to a difference equation with maximum // Proc. Am. Math. Soc., 131 (7) (2002), 2155–2160. [26] X. Yang, B. Chen, G. M. Megson, D. J. Evans, Global attractivity in a recursive sequence // Applied Mathematics and Computation, 158 (2004), 667–682. Contact information Dağıstan Simsek Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan & Selcuk University Konya, Turkey E-Mail: dagistan.simsek@manas.edu.kg dsimsek@selcuk.edu.tr Fahreddin Abdullayev Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan & Mersin University Mersin, Turkey E-Mail: fabdul@mersin.edu.tr fahreddin.abdullayev@manas.edu.kg