Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling
The Crimean fold-thrust belt comprises the onshore Crimean-dome fold-thrust belt and the offshore Sorokin accretionary wedge, a sub-surface imbricate stack with high oil and gas potential. We combine geomorphological and balanced cross-section analyses with published low-temperature thermo¬chronolog...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут геофізики ім. С.I. Субботіна НАН України
2018
|
Назва видання: | Геофизический журнал |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/145415 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling / M. Nakapelyukh, V. Belskyi, L. Ratschbacher // Геофизический журнал. — 2018. — Т. 40, № 2. — С. 12-29. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-145415 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1454152019-01-22T01:24:00Z Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling Nakapelyukh, M. Belskyi, V. Ratschbacher, L. The Crimean fold-thrust belt comprises the onshore Crimean-dome fold-thrust belt and the offshore Sorokin accretionary wedge, a sub-surface imbricate stack with high oil and gas potential. We combine geomorphological and balanced cross-section analyses with published low-temperature thermo¬chronology and offshore seismic data to constrain both its present geometry and Cenozoic structural evolution. We interpret the Crimean dome as a map-scale, ramp-related antiform above the Main Crimean thrust, the basal detachment to the onshore part of the fold-thrust belt. The Main Crimean thrust separates the continental Scythian plate from the transitional to oceanic Eastern Black-Sea basin and likely reactivates an Upper Triassic–Lower Jurassic passive continental margin structure. The Crimean fold-thrust belt has accommodated ~24 km shortening since the Eocene, with ~12 km contraction each in the thick-skinned Crimean dome and the thin-skinned Sorokin accretionary wedge. The intermediate geometries in the kinematic evolution traced by the kinematic forward model are testable by future hydrocarbon exploration and thermochronologic studies. Крымский складчато-надвижные пояс состоит из Крымского куполообразного складчатого пояса и аккреционного клина Сорокина с высокими перспективами на нефть и газ. Объединены геоморфологический анализ и метод балансировки геологических разрезов, опубликованные низкотемпературные термохронологични данные и данные акваториальных сейсмических профилей для воспроизведения как современной строения, так и кайнозойской структурной эволюции. Интерпретировано Крымский купол как антиформну структуру в масштабе карты, связанной с главным крымским надвижкой (базальным детачментом для горной части складчатого пояса). Главный крымский надвижка отделяет континентальную Скифский плиту от переходной океанической Схидночорноморського бассейна и, вероятно, реактивируется структуру пассивной Континенталь окраины верхнего триаса-нижней юры. Крымский складчато-надвижные пояс претерпел ~ 24 км сокращения, начиная с эоцена, с примерно одинаковым сокращением (~ 12 км) в обоих структурах - Крымском куполе и Сорокинском аккреционного клине. Промежуточные стадии деформации, прослежены кинематической форвард-моделью, является предметом проверки будущими поисками углеводородов и термохронологичнимы исследованиями. Кримський складчасто-насувний пояс складається з Кримського куполоподібного складчастого поясу та акреційного клину Сорокина з високими перспективами на нафту і газ. Поєднано геоморфологічний аналіз і метод балансування геологічних розрізів, опубліковані низькотемпературні термохронологічні дані та дані акваторіальних сейсмічних профілей для відтворення як сучасної будови, так і кайнозойської структурної еволюції. Інтерпретовано Кримський купол як антиформну структуру в масштабі карти, що пов’язана з головним кримським насувом (базальним детачментом для гірської частини складчастого поясу). Головний кримський насув відділяє континентальну Скіфську плиту від перехідної океанічної Східночорноморського басейну і, ймовірно, реактивує структуру пасивної континентальої окраїни верхнього тріасу—нижньої юри. Кримський складчасто-насувний пояс зазнав ~24 км скорочення, починаючи з еоцену, з приблизно однаковим скороченням (~12 км) в обох структурах — Кримському куполі та Сорокинському акреційному клині. Проміжні стадії деформації, прослідковані кінематичною форвард-моделлю, є предметом перевірки майбутніми пошуками вуглеводнів і термохронологічними дослідженнями. 2018 2018 Article Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling / M. Nakapelyukh, V. Belskyi, L. Ratschbacher // Геофизический журнал. — 2018. — Т. 40, № 2. — С. 12-29. — Бібліогр.: 51 назв. — англ. 0203-3100 DOI: https://doi.org/10.24028/gzh.0203-3100.v40i2.2018.128877 http://dspace.nbuv.gov.ua/handle/123456789/145415 551.1/4 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The Crimean fold-thrust belt comprises the onshore Crimean-dome fold-thrust belt and the offshore Sorokin accretionary wedge, a sub-surface imbricate stack with high oil and gas potential. We combine geomorphological and balanced cross-section analyses with published low-temperature thermo¬chronology and offshore seismic data to constrain both its present geometry and Cenozoic structural evolution. We interpret the Crimean dome as a map-scale, ramp-related antiform above the Main Crimean thrust, the basal detachment to the onshore part of the fold-thrust belt. The Main Crimean thrust separates the continental Scythian plate from the transitional to oceanic Eastern Black-Sea basin and likely reactivates an Upper Triassic–Lower Jurassic passive continental margin structure. The Crimean fold-thrust belt has accommodated ~24 km shortening since the Eocene, with ~12 km contraction each in the thick-skinned Crimean dome and the thin-skinned Sorokin accretionary wedge. The intermediate geometries in the kinematic evolution traced by the kinematic forward model are testable by future hydrocarbon exploration and thermochronologic studies. |
format |
Article |
author |
Nakapelyukh, M. Belskyi, V. Ratschbacher, L. |
spellingShingle |
Nakapelyukh, M. Belskyi, V. Ratschbacher, L. Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling Геофизический журнал |
author_facet |
Nakapelyukh, M. Belskyi, V. Ratschbacher, L. |
author_sort |
Nakapelyukh, M. |
title |
Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling |
title_short |
Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling |
title_full |
Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling |
title_fullStr |
Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling |
title_full_unstemmed |
Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling |
title_sort |
geometry and cenozoic evolution of the crimean fold-thrust belt from cross-section balancing and kinematic forward modeling |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2018 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/145415 |
citation_txt |
Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling / M. Nakapelyukh, V. Belskyi, L. Ratschbacher // Геофизический журнал. — 2018. — Т. 40, № 2. — С. 12-29. — Бібліогр.: 51 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT nakapelyukhm geometryandcenozoicevolutionofthecrimeanfoldthrustbeltfromcrosssectionbalancingandkinematicforwardmodeling AT belskyiv geometryandcenozoicevolutionofthecrimeanfoldthrustbeltfromcrosssectionbalancingandkinematicforwardmodeling AT ratschbacherl geometryandcenozoicevolutionofthecrimeanfoldthrustbeltfromcrosssectionbalancingandkinematicforwardmodeling |
first_indexed |
2025-07-10T21:39:25Z |
last_indexed |
2025-07-10T21:39:25Z |
_version_ |
1837297657842761728 |
fulltext |
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
12 Геофизический журнал № 2, Т. 40, 2018
Introduction. The geology of the Crimean
peninsula records the interaction between the
Eastern Black-Sea basin and the Scythian
platform as the result of the Arabia-Eurasia
collision [Saintot et al., 1999; Nikishin et al.,
2001; Mileev et al., 2006]. Although the region
has been studied for more than a century, the
localization, geometry, and amount of defor-
mation in the fold-thrust belt in the on- and
offshore parts of the peninsula are avidly de-
bated and remain to be fully understood (e. g.
[Favre, 1877; Foht, 1926; Muratov, 1960; Mura-
tov, Sydorenko, 1969; Kazantsev, 1982; Slavin,
1989; Nikishin et al., 2001, 2003]). Onshore,
new biostratigraphic studies indicate the
existence of at least two lithostratigraphical
УДК 551.1/4 DOI: 10.24028/gzh.0203-3100.v40i2.2018.128877
Geometry and Cenozoic evolution of the Crimean
fold-thrust belt from cross-section balancing and
kinematic forward modeling
© M. Nakapelyukh1, 2, V. Belskyi3, L. Ratschbacher2, 2018
1Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Kiev, Ukraine
2Freiberg University of Mining and Technology, Freiberg, Germany
3Institute of Geochemistry, Mineralogy and Ore Formation,
National Academy of Sciences of Ukraine, Kiev, Ukraine
Received 15 February 2018
Кримський складчасто-насувний пояс складається з Кримського куполоподіб-
ного складчастого поясу та акреційного клину Сорокина з високими перспек-
тивами на нафту і газ. Поєднано геоморфологічний аналіз і метод балансування
геологічних розрізів, опубліковані низькотемпературні термохронологічні дані
та дані акваторіальних сейсмічних профілей для відтворення як сучасної будови,
так і кайнозойської структурної еволюції. Інтерпретовано Кримський купол як
антиформну структуру в масштабі карти, що пов’язана з головним кримським
насувом (базальним детачментом для гірської частини складчастого поясу).
Голов ний кримський насув відділяє континентальну Скіфську плиту від перехід-
ної океанічної Східночорноморського басейну і, ймовірно, реактивує структуру
пасивної континентальої окраїни верхнього тріасу—нижньої юри. Кримський
складчасто-насувний пояс зазнав ~24 км скорочення, починаючи з еоцену, з при-
близно однаковим скороченням (~12 км) в обох структурах — Кримському куполі
та Сорокинському акреційному клині. Проміжні стадії деформації, прослідковані
кінематичною форвард-моделлю, є предметом перевірки майбутніми пошуками
вуглеводнів і термохронологічними дослідженнями.
Ключові слова: Кримський складчасто-насувний пояс, товстошарова і тонко-
шарова структурна геометрія, збалансований перетин, кінематичне пряме моде-
лювання.
units comprising turbidites (“flysch”), formed
in the Upper Triassic—Lower/Middle(?) Ju-
rassic and the Upper Jurassic—Lower Creta-
ceous during continental margin and back-
arc rift formation, respectively [Nikishin et
al., 2015c; Sheremet et al., 2016a; Oszczypko
et al., 2017]. These studies provided a better
regional correlation of the Mesozoic strata,
which allows the reconstruction of the Ceno-
zoic deformation in the Crimean fold-thrust
belt along the southern rim of the peninsular.
Offshore, seismic profiles detailed the struc-
tures of the Sorokin accretionary wedge and
its transition to the onshore structures [Niki-
shin et al., 2015a, b; Sheremet et al., 2016b;
Sydorenko et al., 2016]
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 13
In this study, we present a balanced cross
section and a kinematic forward model for
the Crimean fold-thrust belt. Our analysis
reveals thick- and thin-skinned deformation
geometries in the onshore—offshore transi-
tion, which are related to the northwestward
subduction of the Eastern Black-Sea basin
under the Scythian platform. The moderate
shortening in the Scythian platform sedimen-
tary cover preserved key features for the res-
toration of the structural geometry, i.e., the
flat Upper Cretaceous—Lower Eocene strata
atop a vast upper Albian peneplain, which
allows the tracing the subsequent Cenozoic
folding and faulting.
Geological setting. Between the Black-Sea
basin and the Scythian plate, the Crimean
peninsula fold-thrust belt and the Western
Greater Caucasus accommodate the conver-
gence between Arabia and Eurasia (Fig. 1)
[Saintot et al., 1999; Stephenson et al., 2004].
The Scythian plate comprises the stretched
continental margin of the East European
platform [Khain, 1984; Kruglov, Tsypko,
1988; Kazantcev, 1982; Stephenson et al.,
2004; Saintot et al., 2006; Meijers, Vrouwe,
2010]. The Black Sea basin consists of two
sub-basins — the Eastern Black Sea and the
Western Black Sea — Mid Black Sea Ridge.
These sub-basins opened mainly during the
Lower Cretaceous as back-arc basins behind
the Pontide subduction zone with both sub-
oceanic and thinned continental lithosphere;
they feature large-displacement normal faults
[Robinson et al., 1996; Nikishin et al., 2003,
2015b,c]. In the south, renewed extension
took place during the latest Cretaceous—Pa-
leogene, whereas in the north — along the
southern rim of the Scythian plate-tectonic
quiescence followed the Lower Cretaceous
rifting [Khriachtchevskaia et al., 2010]. Mc-
Clusky et al. [2000] suggested that the transi-
tional and oceanic lithosphere underlying the
Black Sea is rheologically stronger than the
continental lithosphere to its north and south.
On the one hand, the basin has been acting as
a backstop, resisting deformation and focus-
ing it in the adjacent continental lithosphere.
On the other hand, the rigid back-arc basin
lithosphere has transferred deformation over
large distances, causing — for example — the
shortening in the north of the Western Black
Sea basin [Munteanu et al., 2013]. There,
thrusting inverted the Cretaceous rift margin
of the Odessa shelf, causing ≤16 km shorten-
ing (Fig. 1, b) [Munteanu et al., 2011].
In the Greater Caucasus, olistostromes and
a regional angular unconformity record Eo-
cene to Oligocene deformation that occurred
as a far-field response to the initiation of the
continental collision between the Arabian and
Eurasian plates (see Fig. 1, b) (e. g. [Robinson
et al., 1996; Vincent et al., 2007]). The central
portion of the Greater Caucasus yielded Pa-
leogene to Pliocene low-temperature thermo-
chronologic ages; most of the exhumation was
post-Miocene [Kral, Gurbanov, 1996; Avdeev,
Niemi, 2011]. Deformation along the Western
Greater Caucasus accommodated Cenozoic
dextrally transpressive deformation between
the Eastern Black-Sea basin and the Scyth-
ian plate. There, post-Eocene exhumation
decreases from southeast to northwest from
~7 km to <5 km [Vincent et al., 2010; Avdeev,
Niemi, 2011]. The Odessa and Western
Crimean sinistral strike-slip faults indicate a
northwestward propagation of the East Black-
Sea basin and northwest—southeast shorten-
ing across the southern rim of the Crimean
peninsula. There, the Crimean fold-thrust belt
developed, which contains an onshore part
— the Crimean dome — and an offshore part
— the Sorokin accretionary wedge, separated
by the Main Crimean thrust (Fig. 2, a). In this
belt, both low-temperature geochronology
[Pánek et al., 2009] and stratigraphy [Niki-
shin et al., 2015c] indicate that the shortening
commenced in the Eocene. An elastic block
model, derived from the present-day plate
motions, predicts 0,6—1,3 mm/year dextral
strike-slip shear between the Eastern Black-
Sea basin and the Scythian plate (Fig. 1, b, c)
[Reilinger et al., 2006]; earthquakes in the
Crimean fold-thrust belt witness this active
deformation (see Fig. 2, a).
For the purpose of this study, we inter-
preted the stratigraphy of the Crimean pen-
insula and the adjacent Black-Sea basin to
reflect three evolutionary stages (Fig. 2, a, 3).
1. The pre-Albian rocks represent the crystal-
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
14 Геофизический журнал № 2, Т. 40, 2018
Fig. 1. Location of Arabia-Eurasia collision zone within the Alpine-Himalaya belt (a). Tectonic map of the Black-Sea
basin and adjacent areas modified from [Reilinger et al., 2006; Schmid et al., 2008; Munteanu et al., 2013; Nikishin
et al., 2015a, b; Sheremet et al., 2016a, b] (b). Blue line — balanced cross section location from [Munteanu et al.,
2013]; red dots — earthquake epicenters (M>4,5; USGS earthquake catalogue 2000 to 2016); thrusts with filled
and open triangles — thick- and thin-skinned thrusts; double line — extensional plate boundary; plain lines —
strike-slip faults; white arrows and corresponding numbers — GPS-derived plate velocities (mm/yr) relative to
Eurasia [Reilinger et al., 2006]; NAF — North Anatolian fault; EAF — East Anatolian fault; OF — Odessa fault;
WCF — Western Crimean fault; TESZ — Trans-European Suture Zone. Map showing GPS velocity and movement
direction of the Black Sea and neighboring areas relative to Eurasia (modified from [Reilinger et al., 2006]) (c).
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 15
Fig. 2. Geological map of the Crimean thrust-fold-belt (a) and geological section across the Crimean dome along
line A—A’ modified from [Muratov, Sydorenko, 1969] (b). Wells are projected into the line of section. Basement
normal faults are taken from [Tchaikovsky et al., 2006]. Vertically exaggerated upper part of the A—A’ cross sec-
tion line (c). Black line in a traces the balanced cross section; black dots, earthquake epicenters ML=4÷5 (after
[Yegorova, Gobarenko, 2010]).
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
16 Геофизический журнал № 2, Т. 40, 2018
line basement of the Scythian plate and its
deformed and partly eroded Triassic—Lower
Cretaceous cover. 2. The Upper Albian—Mid-
dle Eocene sequence records the build-up of
a platform on a passive continental margin. 3.
The Middle Eocene—Recent strata comprise
a syn-orogenic sedimentary rock sequence.
According to the DOBRE regional seismic
profiles (see Fig. 2, a), the crust below the
Crimean peninsula is 40—50 km thick and
gradually thins southward [Yegorova, Goba-
renko, 2010; Starostenko et al., 2015, 2016].
The Scythian crystalline basement was drilled
to 0,2—2,0 km depth [Muratov, 1960]; the
hanging Paleozoic sedimentary rocks — also
only known from wells — are 1—5 km thick
[Muratov, Sydrenko, 1969]. Upper Triassic
to Lower?Middle Jurassic and Lower Creta-
ceous flysch and intervening Middle Juras-
sic volcanic rocks and Tithonian—Berriasian
carbonate platform strata — the latter up to
1,2 km thick — record the complex Mesozoic
passive margin evolution. The Tithonian—
Berriasian limestones, more resistant than
the surrounding flysch, occupy the highest
elevations of the Crimean peninsula, forming
relatively flat, northwest dipping slopes; the
limestones are capped by a locally preserved
Fig. 3. Simplified stratigraphy along the A—A’ geological cross section (see Fig. 2 for location). The northern slope
of the Crimean dome modified from [Nikishin et al., 2015a] (a) and the crest of the Crimean dome modified from
[Muratov, Sydorenko, 1969] with the three major stages of Mesozoic—Cenozoic basin evolution (b); see text for
details. The erosional surface of the Messinian crisis relates to offshore data.
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 17
Fig. 4. Shaded relief map (a) and slope-gradient map of the southern Crimean peninsula and the northern Black
Sea and the position of the swath profiles (b) (yellow frames) shown in Fig. 5. Purple line marks the outcrop trace
of the peneplain, i. e., the boundary between pre-Albian flysch and the Upper Albian—Middle Eocene platform
strata. Blue lines outline the upper Albian peneplain relicts within the mountains of the southern peninsula. White
lines frame morphological depressions not related to the peneplain.
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
18 Геофизический журнал № 2, Т. 40, 2018
Fig. 5. A series of 20—25 km wide, strike-normal topographic swath profiles across the Crimean fold-thrust belt
from west (a) to east (c). Location profiles see Fig. 4, a. Gray lines show mean surface slope. The dotted blue line
traces the highest elevations, interpreted to represent a little eroded upper Albian peneplain. The strike of the
continental slope is a bit oblique to the westernmost profile, slightly shifting the slope lines offshore in a. The
peneplain connects with the exposure traces of the basal strata of the platform deposits north and south of the
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 19
upper Albian erosional surface (see below
[Pánek et al., 2009] (Fig. 2, b, c). The Upper
Cretaceous—Eocene deposits (stage 2) cover
the Triassic—Lower Cretaceous strata uncon-
formably. The northern slope of the Crimean
dome and the hinterland of the Crimean
fold-thrust belt (north of the dome) preserve
a continuous section of these platform depos-
its; their thickness varies from 0,3 to 8,0 km
[Muratov, Sydorenko, 1969; Tchaikovsky et
al., 2006; Sheremet at al., 2016b]. The plat-
form sedimentation terminated in the middle
Eocene due to uplift induced by the under-
thrusting of the East Black-Sea basin litho-
sphere below the Scythian plate [Nikishin et
al., 2001; Pánek et al., 2009]. A middle Eocene
angular unconformity at the base of the syn-
orogenic deposits (stage 3) records the onset
of shortening; middle Eocene massive num-
mulitic limestones unconformably cover the
older rocks [Muratov, 1960; Lysenko, Janin,
1979; Afanasenkov et al., 2007; Sheremet et
al., 2016a]. The Oligocene—Miocene strata
consist of up to 2 km thick grey, and brown-
ish to reddish clays (Maykop Formation) and
unconformably overlie the middle Eocene
limestone [Nikishin et al., 2015c; Sheremet
et al., 2016a]. The Neogene consists mostly of
shallow marine terrigenous-carbonate depos-
its. In Sorokin accretionary wedge, seismic re-
flection data record syn-tectonic growth stra-
ta from the Middle Oligocene to the Middle
Pliocene [Sheremet et al., 2016b]. Offshore,
a sharp disconformity, visible in the seismic
sections, traces a major erosional surface; it
is interpreted to record the Messinian crisis
(∼6—5 Ma), resulting from an important sea
level drop [Krijgsman et al., 2010; Sheremet
et al., 2016b].
Geomorphological analysis. We combined
the 90 m resolution Shuttle Radar Topography
Mission data with the bathymetric data for the
Black Sea from the 30 arc sec General Bathy-
metric Chart of the Oceans to construct re-
lief and slope-gradient maps and three swath
profiles, normal to the strike of the Crimean
fold-thrust belt structures (Figs. 4, 5). The area
with a slope <5° constitutes a paleo-surface or
plateau that corresponds to the upper Albian
unconformity between the Triassic—Lower
Cretaceous and the Upper Albian—Middle
Eocene rocks; it represents a large and flat
erosion surface or peneplain [Pánek et al.,
2009]. Two relatively flat surfaces — west of
Baydarska and north of Chatyr-Dag plateaus
— are Lower Cretaceous erosional depres-
sions, significantly lower than the Upper Al-
bian peneplain (see Fig. 2, c; the depressions
are marked with «D» in Fig. 4, a).
We traced the paleo-surface regionally by
connecting the highest elevations along the
swath profiles, interpreting them to have ex-
perienced little erosion into the Tithonian—
Berriasian platform carbonates below the
peneplain (Fig. 2, 5, a—c). A few remnants
of Upper Cretaceous strata — dated micro-
paleontologically — outline the paleo-surface
at the highest elevations in the Chatyr-Dag
and Karabi areas (Fig. 4, a) [Sheremet et
al., 2016a; Oszczypko et al., 2017]. North of
Demerji (see Fig. 4), Upper Albian—Middle
Eocene platform rocks overlie the peneplain
directly. Erosion destroyed the paleo-surface
along the southern coast of the Crimean dome,
but the Upper Albian—Middle Eocene plat-
form rocks north of the Main Crimean thrust
are preserved offshore; there, they dip ~17°
southeast (see Fig. 5, a, c) [Sheremet et al.,
2016b]. We traced the peneplain across the
Crimean dome, connecting the upper Albian
unconformity mapped onshore with its off-
shore parts (blue lines in Fig. 5, a, c). We infer
that the northwest and southwest dips of this
paleo-surface determine the backlimb and
forelimb geometries, respectively, of the large-
scale antiform that constitutes the Crimean
Crimean dome. The dips of the peneplain (3,2—4,6° without vertical exaggeration) outline the large-scale antiform
of the Crimean dome. Fragments of the seismic profile of [Sydorenko et al., 2016] (d), which location is shown
in Fig. 2, a, and cross section reinterpreting d (e). Pink, green, and yellow colored rock packages highlight the
three main stages of the stratigraphic evolution, i.e., the pre-Albian rocks below the Upper Albian peneplain, the
Upper Albian to Middle Eocene platform deposits, and the post Middle Eocene syn-orogenic deposits. Blue line,
position of the Upper Albian peneplain (see Fig. 3).
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
20 Геофизический журнал № 2, Т. 40, 2018
dome; the dome formed as a thick-skinned
structure above the Main Crimean thrust (see
Fig. 5, a, c). The dip of the forelimb above
the Main Crimean thrust approximately deter-
mines the continental slope in the Black Sea
(see Fig. 2, 5). Farther east, across the Kerch
peninsula, the DOBRE-2 seismic line reveals a
map-scale antiformal structure — the Crimean
dome — and a part of the leading Sorokin
accretionary wedge [Sydorenko et al., 2016]
(see Fig. 2, 5, d, e). The oblique orientation
of this seismic line to the tectonic transport
direction precludes the construction of a bal-
anced cross section. An estimate of the total
shortening along the section yielded at least
12 km, less than across the Crimean peninsula
and its offshore part (see below). This is line
with the less deep erosion across the Kerch
peninsula than across the Crimean peninsula;
this allowed the preservation of the upper Al-
bian peneplain and the Upper Albian—Middle
Eocene platform rocks.
Balancing cross section. We combined
the geometry of the antiform above the Main
Crimean thrust with the geometry of the So-
rokin accretionary wedge outlined by the off-
shore seismic data [Sheremet et al., 2016b;
Sydorenko et al., 2016]. Together with the
available low-temperature thermochrono-
logic ages [Pánek et al., 2009], these data
constrain the present geometry and the struc-
tural evolution of the Crimean fold-and-thrust
Fig. 6. Vertically exaggerated upper part of the Alushta balanced cross section (a), balanced (b) and restored (c)
Alushta cross section. Fig. 2 for location. ΔL — total shortening.
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 21
belt. We used cross-section balancing and
forward modeling. The Alushta cross section
extends 192 km NW—SE from the middle of
the Crimean peninsula at 45°40’N, 33°55’E,
through the remnants of the peneplain at
Karabi, to 44°07’N, 34°59’E in the Black Sea
(Fig. 2, 4, 6, a, b); this section nearly coincides
with the one of [Sheremet et al., 2016b].
Detailed geological maps based on abun-
dant exposures constrain the Crimean fold-
thrust belt north of the Crimean dome (e. g.
[Muratov, Sydorenko, 1969; Tchaikovsky et
al., 2006]). Its southern part occupies the sub-
marine Black-Sea shelf, continental rise, and
abyssal plain. Our interpretations follow those
given by [Robinson et al., 1996, Starostenko et
al., 2016, Vakarchuk et al., 2016], which use
the structures visible in the reflection seismic
lines (see Fig. 2) [Finetti, 1988; Nikishin et al.,
2015a, b; Sheremet et al., 2016b; Sydorenko
et al., 2016]. The major structural features
of the Alushta section (Fig. 6, a, b) are from
north to south the Crimean platform and the
Crimean dome, which exposes the pre-Albian
sequence. To the south — under the abys-
sal plain — the Sorokin accretionary wedge
comprises a thin-skinned belt above a basal
detachment (Fig. 6, 7).
Construction of the balanced cross sec-
tion. Our balanced cross-section construction
used a few general assumptions: throughout
the deformation history, line length and sur-
face area remain constant; a common basal
detachment underlies both the Crimean
dome and the Sorokin accretionary wedge;
the structural geometry can be modeled
with the fault-parallel-flow and trishear al-
gorithms; the preferred restorations requires
a minimum of shortening and explains the
geological data. We interpret the internal
structure of the Sorokin accretionary wedge
as a series of splay faults, shortening the
post-Albian platform and syn-orogenic stra-
ta above a basal detachment (see Fig. 7); the
construction used fault-parallel flow mecha-
nism. In its frontal part, individual folds can
be traced in the seismic line. Their geometries
— dips and thickness of the strata increase
smoothly and incrementally from anticlinal
crest to the limbs — suggest shortening by tr-
ishear fault-propagation folding (e. g. [Erslav,
1991; Hardy, Ford 1997]). The dip and depth
Fig. 7. Offshore seismic line of [Sheremet et al., 2016b] across the Sorokin accretionary wedge (a). Green lines
outline the critical cohesive Coulomb wedge, defined by a 3,5° surface slope (α) and a 3,5° dip of the basal detach-
ment (β). Table for calculation parameters. Balanced and c restored cross sections of the Sorokin accretionary
wedge (b). The wedge is interpreted as a series of splay faults bounding post-Albian platform and syn-orogenic
rocks above a basal detachment. Fig. 6 for legend. ΔL — total shortening.
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
22 Геофизический журнал № 2, Т. 40, 2018
of the basal detachment in the frontal part of
accretionary wedge is taken from the seismic
reflection data (Fig. 7, a). We postulate that
the peneplain at the top of the pre-Albian se-
quence acted as this detachment over most
to the wedge’s north—south extent; in the
southeast, at the wedge front, it climbed into
Paleocene deposits. In addition, we used the
critical Coulomb-wedge model of Davis et
al. [1983] and Dahlen et al. [1984] to calcu-
late the dip angle of the detachment. First,
the swath profiles across the wedge define
its surface slope at ~3,5°. Assuming a critical
state and a rheology typical for sedimentary
wedges (Table), we calculated a 3,5° dip for
the base of the wedge, comparable with that
Measured and inferred parameters of the Sorokin accretionary wedge
Detachment
depth, m H 6500 9000 Given by the balanced cross sections
Local depth, m D 2000 100 Given by the general bathymetric chart
Overall surface
slope in degrees α 3,5 Given by the balanced cross sections
Regional
detachment dip,
degrees
β 3,5 β=(5,9°−α)/0,66 from [Davis et al., 1983]
Internal
coefficient of
friction
μ 0,9—1,0 From [Dahlen et al., 1984]
Basal coefficient
of friction μb 0,85 Assumed; based on laboratory measurements of
maximum friction of many silicate rocks [Byerlee, 1978]
Fluid-pressure
ratio λ 0,9 From [Davis et al., 1983]
Basal fluid-
pressure ratio λb 0,9 From [Davis et al., 1983]
Density of
water, kg/m3 ρw 1000 —
Mean density,
kg/m3 ρ 2500 From [Dahlen et al., 1984]
Acceleration of
gravity, m/s2 g 9,8 —
Coefficient of
dependency
basal coefficient
of friction to
accretionary
wedges
parameters
K 5,3
1tan bK
− μ + β
=
α + β
Vertical normal
traction, MPa σz 178,9 240,1 z wgD gHσ = ρ + ρ
Pore fluid
pressure, MPa Pf 162.9 216,2 ( )f z w wP gD gD= λ× σ − ρ + ρ
Basal shear
traction, MPa τb 418,3 579,2 ( )( )( ) (1 ) (1 ) (1 )b w b wK gHτ = α + β × − ρ ρ + − λ − − ρ ρ β ×ρ
estimated from the seismic data. The in this
way estimated depth to the basal detachment
of the Sorokin accretionary wedge is ~6,5 km
beneath the frontal part, ~9 km in the middle
(see Fig. 7), and ~15 km below the frontal
part of the Crimean dome (see Fig. 6). This is
deeper than suggested by [Sheremet et al.,
2016b], who used a depth of 6,0—6,5 km for
the entire wedge. Using the critical wedge
model, we also calculated the basic traction,
created by the subduction of the East Black-
Sea microplate beneath the Scythian plate.
The results are presented for two points at 6,5
and 9,0 km depth along the detachment. The
values are at best approximate due to the un-
certain input parameters; nevertheless, they
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 23
represent a maximum possible fluid pressure,
important for and testable by future drilling.
We modeled the Crimean dome as a fault-
ramp fold above the Main Crimean thrust as
the basal detachment (see Fig. 6). The pre-
served parts of the upper Albian peneplain
determine the geometry of the back- and fore-
limbs; the backlimb dips ~4° NW, the forelimb
Fig. 8. Four steps of the forward model showing the kinematic evolution of the Crimean fold-and-thrust belt
based on cross-section balancing, apatite fission-track [Pánek et al., 2009], and stratigraphic data [Nikishin et al.,
2015c; Sheremet et al., 2016a]. Step 1 shows the vast peneplain along the boundary between the pre-Albian rocks
(crystalline basement of the Scythian plate and its deformed and differentially eroded Triassic—Lower Cretaceous
cover) and the Upper Albian to Middle Eocene platform sequence. Step 2 shows the undeformed Lower Creta-
ceous—Middle Eocene platform deposits with their variable (0,3—8,0 km) thickness. The onset of inversion at
~50—32 Ma (~40 Ma) is dated by apatite fission-track thermochronology and growth strata within the backlimb of
the Crimean dome and in the Sorokin accretionary wedge. Step 3 shows the major structural geometry completed.
The flat Messinian erosional surface, marking a sea level drop, allows the post-Messinian restoration of the frontal
part of the fold-thrust belt. Steps 4 shows the present-day geometry. For legend, see Fig. 6. See text for details.
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
24 Геофизический журнал № 2, Т. 40, 2018
~17° SE (see Fig. 5, a—c). The depth to the
basal detachment under the Crimean dome
is the fundamental parameter that controls
the deformation geometry. We assumed that
the Main Crimean thrust reactivated a nor-
mal fault between of the Scythian plate and
the Eastern Black-Sea basin that formed dur-
ing the Triassic—Jurassic active continental
margin construction [Nikishin et al., 2015c].
Northeast trending, large basement normal
faults within the Crimean peninsula were
mapped by drilling and seismic data [Tchai-
kovsky et al., 2006] (see Fig. 2). Most of these
faults dip ~50—70° NW and have a vertical
offset of hundreds to thousands of meters. By
trial-and-error, we approximated a solution
that fits the geometry of the Crimean dome;
the best-fit model for the Alushta section (see
Fig. 6, b) has a 30° dip for the Main Crimean
thrust, which caused ~12 km of thick-skinned
shortening in its hanging wall.
Restored cross section. Fig. 6 shows de-
formed and restored line lengths for the Alush-
ta section; the pinpoint is in the hinterland on
the Scythian platform. We used the top of the
Eocene datum as the reference horizon for
the calculation of the total shortening over
the entire length of the sections. We obtained
~24 km of shortening on this horizon. The
thin-skinned Sorokin accretionary wedge and
the thick-skinned Crimean dome each yielded
~12 km of shortening. The total value, ~24 km,
is higher than the one obtained by [Munteanu
et al., 2011] for the northern Western Black-
Sea basin (see blue section line in Fig. 1, b);
they estimated ~16 km of shortening during
the late Middle Eocene—Pliocene.
Solov’ev and Rogov’s [2009] detrital zircon
fission-track data from the pre-Albian terrige-
nous complexes of the Crimean dome yielded
ages ≥154 Ma. Therefore, the Cenozoic burial
did not heat these rocks above the effective fis-
sion-track annealing temperature of 240±30 °C
of natural zircon [Hurford, 1998]; assum-
ing a geothermal gradient of 20—30 °C/km,
these rocks experienced <7,5—10,0 km of
burial. Fig. 4, a shows the location and ages
of the apatite fission-track samples of Pánek
et al. [2009] along the southern coast of the
Crimean peninsula. Most of the ages cluster
in the Eocene (~50—32 Ma, median=41 Ma);
the westernmost sample yielded an Upper
Cretaceous age (~74 Ma), the easternmost one
a Jurassic—Cretaceous age (~145 Ma). Along
the Alushta section, all sample were reset in
the Eocene—Oligocene; this translates into
a 4—6 km thick, eroded overburden above
the restored position of each sample using
an apatite fission-track closing temperature
of ~120 °C, and, again, a geothermal gradient
range of 20—30 °C/km. We projected the po-
sitions of the northern and southern sample
groups (see Fig. 4, a) onto the Alushta sec-
tion with their positions restored according to
the structural model (see Fig. 6, b, c). These
restorations — shown as red bars above the
erosional profile in the restored cross section
(see Fig. 6, c) — give the minimum thickness
(~4—6 km) of the stratigraphic column pri-
or to erosion. The top of this pre-erosional
stratigraphic column corresponds to the up-
per Eocene. The onset of erosion then cooled
the samples through the apatite fission-track
closure temperature, indicating that shorten-
ing occurred in the Eocene—Oligocene.
Discussion. To visualize the structural evo-
lution of the Crimean fold-thrust belt, Fig. 8
shows a kinematic forward model based on the
balanced cross section. This model accounts
for the dimensions of individual structures,
their growth succession, the offsets along the
thrusts, and the modeling algorithms that are
best suitable to describe the observed struc-
tural geometries (fault-parallel flow and tris-
hear). In the following, we describe four steps
of the kinematic evolution.
Step 1: Upper Albian peneplain at <100 Ma.
The peneplain is defined by the boundary be-
tween the deformed and differentially eroded
Triassic—Lower Cretaceous cover above the
crystalline basement of the Scythian plate and
the Upper Albian—Middle Eocene carbon-
ate platform rocks (see Fig. 2). The Upper Al-
bian and younger formations (stage 2 strata
in Fig. 3) are transgressive on the pre-Albian
rocks (stage 1 strata in Fig. 3) and form an
almost continuous sedimentary cover. The
position of the Main Crimean thrust may be
inherited from the Triassic—Lower Cretaceous
continental margin extension and is probably
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 25
a reactivated low-angle normal fault. As most
of the mapped and imaged normal faults are
steeper, such a normal fault must have had a
listric geometry at depth or was rotated to a
shallower dip during passive margin formation.
Step 2: pre-contractional configuration at
~40 Ma. Inversion affected undeformed Up-
per Cretaceous—Middle Eocene platform de-
posits with a thickness varying between 0,3
and 8,0 km. The apatite fission-track thermo-
chronology, the stratigraphy in the Crimean
dome, and the growth strata in the Sorokin
accretionary wedge time the onset of inver-
sion. Pánek et al. [2009] dated shortening-re-
lated erosion in the Crimean thrust-fold belt
as Middle Eocene—Lower Oligocene and
the deposition of syn-orogenic strata during
the Oligocene—Lower Miocene (Maikopian)
times this Cenozoic deformation offshore:
clays and siltstones form up to 2 km thick,
flysch-like strata [Nikishin et al., 2015c].
Step 3: Messinian crisis at ~6 Ma. The Mes-
sinian erosion surface, a result of an impor-
tant sea level drop [Sheremet et al., 2016b],
developed sub-horizontally. It provides an
offshore datum for the estimation of the pre-
and post-Messinian shortening (Fig. 6, steps 3
and 4). The pre-Messinian shortening across
the Sorokin accretionary wedge was ~9,2 km,
implying that the major structural geometry
was completed before the Messinian ero-
sion surface developed. The post-Messinian
shortening amounted to ~2,8 km. Whereas
the pre-Messinian shortening likely occurred
mostly by in-sequence thrusting, the faulting
and folding of the Messinian erosion surface
at several locations in the Sorokin accretion-
ary wedge (see Fig. 4, 7a of [Sheremet et al.,
2016b] for details) imply out-of-sequence re-
activation along blind thrusts.
Our balancing showed that the to-
tal amount of shortening above the Main
Crimean thrust is ~12 km. The restriction of
the Messinian erosion surface to the offshore
part of the cross section does not allow a sub-
division into pre- and post-Messinian stages
for the Crimean dome. Earthquake with a
magnitude of ML=4÷5 with focal depths of
20—30 km along the Main Crimean thrust,
indicating NW—SE compression (see Fig. 2)
[Smolyaninova et al., 1996], and ongoing slow
cooling of rocks in the Crimean dome [Pánek
et al., 2009] suggest that the Main Crimean
thrust is still active; it may have been active
continuously. We therefore speculate that the
Main Crimean thrust was active with the same
shortening rate as the Sorokin accretionary
wedge during post-Messinian times. The to-
tal pre-Messinian shortening would then be
~18,4 km, the post-Messinian one ~5,6 km.
Steps 4: present-day geometry. The model
implies minimum shortening. Since the onset
of deformation at 50—32 Ma (median=41 Ma
[Pánek et al., 2009]), ~4—6 km of overburden
has been eroded from the crest of Crimean
dome with an average shortening rate be-
tween the Scythian platform and the East-
ern Black-Sea basin of ~0,6 km/Ma (~24 km
over ~40 Ma). Since the Messinian crisis at
6,0—5,3 Ma, ~5,6 km of shortening may have
occurred; if true, this would imply an increase
of the convergent rate to ~0,9—1,0 km/Ma.
The latter corresponds to the right-lateral slip
rates of 0,6—1,3 km/Ma along the boundary
between the Eastern Black-Sea basin and
the Western Great Caucasus deduced from
the block model [Reilinger et al., 2006]; this
rate must have been accommodated across
the Crimean fold-thrust belt. In addition, en-
hanced uplift has taken place in the Western
Greater Caucasus since ~5 Ma [Avdeev, Ni-
emi, 2011], possibly synchronously with the
acceleration of shortening in the Crimean
fold-thrust belt.
Conclusions. Geomorphological analysis
of relief and slope across the fold-thrust belt
of the southern Crimean peninsula outlines
a regionally traceable surface that is inter-
preted to correspond to an upper Albian un-
conformity between Triassic—Lower Creta-
ceous flysch and carbonate rocks and upper
Albian to middle Eocene platform rocks; it
represents a large and flat erosion surface or
peneplain. We infer that the northwest and
southeast dips of this paleo-surface deter-
mine the backlimb and forelimb geometries,
respectively, of a large-scale antiform — the
Crimean dome. This dome formed as a thick-
skinned structure above the Main Crimean
thrust.
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
26 Геофизический журнал № 2, Т. 40, 2018
Afanasenkov A. P., Nikishin A. M., Obukhov A. N.,
2007. Eastern Black Sea Basin: Geological
Structure and Hydrocarbon Potential. Moscow:
Nauchnyy Mir, 172 p. (in Russian).
Avdeev B., Niemi N., 2011. Rapid Pliocene ex hu ma-
tion of the central Greater Caucasus con strained
by low-temperature thermochro nometry. Tec-
tonics 30, TC2009. doi: 10.1029/2010TC002808.
References
Byerlee J., 1978. Friction of rocks. Pure Appl. Geo-
phys. 116, 615—626.
Dahlen F. A., Suppe J., Davis D., 1984. Mechanics of
fold-and-thrust belts and accretionary wedges:
Cohesive Coulomb theory. J. Geophys. Res. 89,
10087—10101. doi: 10.1029/JB089iB12p10087.
Davis D., Suppe J., Dahlen F. A., 1983. Mechan-
Geometry and Cenozoic evolution of the Crimean
fold-thrust belt from cross-section balancing and
kinematic forward modeling
© M. Nakapelyukh1, 2, V. Belskyi3, L. Ratschbacher, 2018
The Crimean fold-thrust belt comprises the onshore Crimean-dome fold-thrust belt and
the offshore Sorokin accretionary wedge, a sub-surface imbricate stack with high oil and
gas potential. We combine geomorphological and balanced cross-section analyses with
published low-temperature thermo¬chronology and offshore seismic data to constrain both
its present geometry and Cenozoic structural evolution. We interpret the Crimean dome
as a map-scale, ramp-related antiform above the Main Crimean thrust, the basal detach-
ment to the onshore part of the fold-thrust belt. The Main Crimean thrust separates the
continental Scythian plate from the transitional to oceanic Eastern Black-Sea basin and
likely reactivates an Upper Triassic–Lower Jurassic passive continental margin structure.
The Crimean fold-thrust belt has accommodated ~24 km shortening since the Eocene,
with ~12 km contraction each in the thick-skinned Crimean dome and the thin-skinned
Sorokin accretionary wedge. The intermediate geometries in the kinematic evolution
traced by the kinematic forward model are testable by future hydrocarbon exploration
and thermochronologic studies.
Key words: Crimean fold-thrust belt, thick-skinned versus thin-skinned structural ge-
ometries, balanced cross section, kinematic forward model.
A new balanced cross section across the
Crimean fold-thrust belt uses known outcrops
relations in the onshore Crimean dome, geo-
morphological analysis to constrain the geom-
etry of the dome’s antiform, seismic reflection
data of the offshore section under the northern
Black-Sea basin, and structural interpretations
that result in conservative shortening esti-
mates. The section implies a basal detachment
that deepens from ~6 km depth below the
offshore accretionary wedge in the south to
>30 km depth beneath Crimean dome in the
north. About 24 km of shortening occurred
across the central part of the Crimean fold-
thrust belt, which also shows the deepest ero-
sion and highest surface uplift. Thick-skinned
shortening in the Crimean fold-thrust belt
started in the middle Eocene–lower Oligocene
(~50—32 Ma) and propagated southeastward
into the Black Sea, forming the thin-skinned
Sorokin accretionary wedge.
Acknowledgments. We thank Midland
Valley’s Academic Software Initiative for ac-
cess to the Move Software package. DAAD
and the State of Saxony funded M.N.’s re-
search at the TU Bergakademie Freiberg.
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 27
ics of fold-and-thrust belts and accretionary
wedges. J. Geophys. Res. 88(B2), 1153—1172.
doi: 10.1029/JB088iB02p01153.
Erslav E., 1991. Trishear fault-propagation folding.
Geology 19, 617—620.
Favre E., 1877. Etude stratigraphique de la partie
sud-ouest de la Crime´e suivie de la description
de quelques echinides de cette region par M.
P. de Zeriel. Ed. H. Georg, Geneva. (in French).
Finetti I., Bricchi G., Del Ben A., Pipan M., Xuan Z.,
1988. Geophysical study of the Black Sea. Boll.
Geofis. Appl. 30, 197—324.
Foht K. K. (ed.), 1926. Geological map of the
Crimea. 1:400000. Leningrad: Geological Com-
mittee.
Hardy S., Ford M., 1997. Numerical modeling of
trishear fault propagation folding. Tectonics
16(5), 841—854.
Hurford A. J., 1998. Zeta: the Ultimate Solution
to Fission-Track Analysis Calibration or Just
an Interim Measure? In: van den Haute P.,
de Corte F. (eds). Advances in Fission-Track
Geochronology. Solid Earth Sciences Library.
Vol. 10. Springer, Dordrecht, 19—32. https://
doi.org/10.1007/978-94-015-9133-1_2.
Kazantsev Y. V., 1982. Tectonics of the Crimea.
Moscow: Nauka, 112 p. (in Russian).
Khain V. Y. 1984. Regional Geotectonics. The
Alpine Mediterranean Belt. Moscow: Nedra,
334 p. (in Russian).
Kral J., Gurbanov A., 1996. Apatite fission track
data from the Great Caucasus pre-Alpine base-
ment. Chem. Erde 56: 177—192.
Krijgsman W., Stoica M., Vasiliev I., Popov V. V.,
2010. Rise and fall of the Paratethys Sea dur-
ing the Messinian salinity crisis. Earth Plan-
et. Sci. Lett. 290(1), 183—191. doi:10.1016/j.
epsl.2009.12.020.
Kruglov S. S., Tsypko A. K. (eds.), 1988. Tectonics
of Ukraine. Moscow: Nedra, 254 p. (in Russian).
Khriachtchevskaia O., Stovba S., Stephenson R.,
2010. Cretaceous-Neogene tectonic evolu-
tion of the northern margin of the Black Sea
from seismic reflection data and tectonic sub-
sidence analysis. In: M. Sosson, N. Kaymakci,
R. Stephenson, F. Bergerat, V. Starostenko (eds.).
Sedimentary Basin Tectonics from the Black Sea
and Caucasus to the Arabian Platform. Geol.
Soc. London Spec. Publ. 340, 137—157. doi.
org/10.1144/SP340.8.
Lysenko N. I., Janin B. T., 1979. Biostratigraphic
characteristics of a typical section of the Up-
per Jurassic and Lower Cretaceous Central
Crimea. Proceedings of the Academy of Science
of the USSR 6, 70—80 (in Russian).
McClusky S., Balassanian S., Barka A., Demir C.,
Ergintav S., Georgiev I., Gurkan O., Ham-
burger M., Hurst K., Kahle H., Kastens K.,
Kekelidze G., King R., Kotzev V., Lenk O., Mah-
moud S., Mishin A., Nadariya M., Ouzounis A.,
Paradissis D., Peter Y., Prilepin M., Reilinger R.,
Sanli I., Seeger H., Tealeb A., Toksöz M. N.,
Veis G., 2000. Global Positioning System con-
straints on plate kinematics and dynamics
in the eastern Mediterranean and Caucasus.
J. Geophys. Res. 105(B3), 5695—5719. doi:
10.1029/1999JB900351
Meijers M. J. M., Vrouwe B., 2010. Jurassic arc
volcanism on Crimea (Ukraine): implications
for the paleo-subduction zone configuration of
the Black Sea region. Lithos 119, 412—426. doi:
10.1016/j.lithos.2010.07.017.
Mileev V. S., Baraboshkin E. Yu., Rozanov S. B.,
Rogov M. A., 2006. Cimmerian and Alpine tec-
tonics of the Crimea mountains. Bulletin of the
Moscow Society of Naturalists, Department of
Geology 81, 22—33 (in Russian).
Munteanu I., Matenco L., Dinu C., Cloetingh S.,
2011. Kinematics of back-arc inversion of the
Western Black Sea Basin. Tectonics 30, TC5004.
doi: 10.1029/2011TC002865.
Munteanu I., Willingshofer E., Sokoutis D., Ma-
tenco L., Dinu C., Cloetingh S., 2013. Transfer of
deformation in back-arc basins with a laterally
variable rheology: Constraints from analogue
modelling of the Balkanides—Western Black
Sea inversion. Tectonophysics 602, 223—236.
doi: 10.1016/j.tecto.2013.03.009.
Muratov M. V., 1960. Brief outline of the geologi-
cal structure of the Crimean peninsula. Mos-
cow: State Scientific and Technical Publishing
House of Literature on Geology and Conserva-
tion of Subsoil, 217 p. (in Russian).
Muratov M. V., Sydorenko A. V. (eds.), 1969. Geolo-
gy of the USSR. Vol. 8. Geological Description.
Crimea. Moscow: Nedra, 576 p. (in Russian).
M. NAKAPELYUKH, V. BELSKYI, L. RATSCHBACHER
28 Геофизический журнал № 2, Т. 40, 2018
Nikishin A. M., Korotaev M. V., Ershov A. V., Bru-
net M. F., 2003. The Black Sea basin: tectonic
history and Neogene-Quaternary rapid subsid-
ence modeling. Sediment. Geol. 156, 149—168.
doi: 10.1016/S0037-0738(02)00286-5.
Nikishin A. M., Okay A. I., Tüysüz O., Demirer A.,
Amelin N., Petrov E., 2015a. The Black Sea ba-
sins structure and history: New model based
on new deep penetration regional seismic
data. Part 1: Basins structure and fill. Mar. Pet-
rol. Geol. 59, 638—655. doi: 10.1016/j.marpet-
geo.2014.08.017.
Nikishin A. M., Okay A. I., Tüysüz O., Demirer A.,
Amelin N., Petrov E., 2015b. The Black Sea ba-
sins structure and history: New model based
on new deep penetration regional seismic data.
Part 2: Tectonic history and paleogeography.
Mar. Petrol. Geol. 59: 656—670. doi: 10.1016/j.
marpetgeo.2014.08.018.
Nikishin A. M., Wannier M., Alekseev A. S., Al-
mendinger O. A., Fokin P. A., Gabdullin R. R.,
Khudoley A. K., Kopaevich L. F., Mityukov A. V.,
Petrov E. I., Rubtsova E. V., 2015c. Mesozoic to
recent geological history of southern Crimea
and the Eastern Black Sea region. Geol. Soc.
London Spec. Publ. 428. doi: 10.1144/SP428.1.
Nikishin A. M., Ziegler P. A., Panov D. I., Naza-
revich B. P., Brunet M. F., Stephenson R. A.,
Bolotov S. N., Korotaev M. V., Tikhomirov P. I.,
2001. Mesozoic and Cainozoic evolution of
the Scythian Platform-Black Sea-Caucasus do-
main. In: Peri-Tethys Memoir 6: Peri-Tethyan
Rift ⁄ Wrench Basins and Passive Margins. Paris:
Mémoires du Muséum national d’Histoire na-
turelle, 186, P. 295—346.
Oszczypko N., Slaczka A., Bubniak I., Olszews-
ka B., Garecka M., 2017. The position and age
of flysch deposits in the Cri mea Mountains
(Southern Ukraine). Geological Quarterly 61(4),
697—722. doi.org/10.7306/gq.1359.
Pánek T., Danišík M., Hradecký J., Frisch W., 2009.
Morphotectonic evolution of the Crimean
mountains (Ukraine) as constrained by apatite
fission track data. Terra Nova 12(4), 271—278.
doi: 10.1111/j.1365-3121.2009.00881.x.
Reilinger R., McClusky S., Vernant P., Lawren-
ce S., Ergintav S., Cakmak R., Ozener H., Gu-
li ev F. K. I., Stepanyan R., Nadariya M., Ha-
hubia G., Mahmoud S., Sakr K., ArRajehi A.,
Paradissis D., Al-Aydrus A., Prilepin M.,
Guseva T., Evren E., Dmitrotsa A., Filikov S. V.,
Gomez F., Al-Ghazzi R., Karam G., 2006. GPS
constraints on continental deformation in the
Africa-Arabia-Eurasia continental collision
zone and implications for the dynamics of plate
interactions. J. Geophys. Res. 111, B05411.
doi: 10.1029/2005JB004051.
Robinson A. G., Rudat J. H., Banks C. J.,
Wiles R. L. F., 1996. Petroleum geology of the
Black Sea. Mar. Petrol. Geol. 13(2), 195—223.
https://doi.org/10.1016/0264-8172(95)00042-9.
Saintot A., Angelier J., Chorowicz J., 1999. Mechan-
ical significance of structural patterns identi-
fied by remote sensing studies: a multiscale
analysis of tectonic structures in Crimea. Tec-
tonophysics 313(1-2), 187—218. doi: 10.1016/
S0040-1951(99)00196-1.
Saintot A., Stephenson R. A., Stovba S., Bru-
net M. F., Yegorova T., Starostenko V., 2006.
The evolution of the southern margin of east-
ern Europe (Eastern European and Scythian
platforms) from the latest Precambrian-Early
Palaeozoic to the Early Cretaceous. Geol. Soc.
London. Memoirs 32, 481—505. doi. 10.1144/
GSL.MEM.2006.032.01.30.
Schmid S. M., Bernoulli D., Fügenschuh B., Ma-
tenco L., Schefer S., Schuster R., Tischler M.,
Ustaszewski K., 2008. The Alpine-Carpathian-
Dinaridic orogenic system: correlation and
evolution of tectonic units. Swiss J. Geosci.
101, 139—183. doi 10.1007/s00015-008-1247-3.
Sheremet Y., Sosson M., Muller C., Gintov O.,
Murovskaya A., Yegorova T., 2016a. Key prob-
lems of stratigraphy in the Eastern Crimea
Peninsula: some insights from new dating and
structural data. Geol. Soc. London Spec. Publ.
428. doi: 10.1144/SP428.14.
Sheremet Y., Sosson M., Muller C., Gintov O., Mur-
ovskaya A., Yegorova T., 2016a. Key problems of
stratigraphy in the Eastern Crimea Peninsula:
some insights from new dating and structural
data. Geol. Soc. London Spec. Publ. 428. doi:
10.1144/SP428.14.
Sheremet Y., Sosson M., Ratzov G., Sydorenko G.,
Voitsitskiy Z., Yegorova T., Gintov O., Murovska-
ya A., 2016b. An offshore-onland transect across
the north-eastern Black Sea basin (Crimean
margin): Evidence of Paleocene to Pliocene
two-stage compression. Tectonophysics 688,
84—100. doi: 10.1016/j.tecto.2016.09.015.
Slavin V. I., 1989. Geological evolution of the
GEOMETRY AND CENOZOIC EVOLUTION OF THE CRIMEAN FOLD-THRUST BELT FROM ...
Геофизический журнал № 2, Т. 40, 2018 29
Crimea in the Mesozoic. Bulletin of Moscow
University. Ser. Geology (6), 24—36 (in Russian).
Smolyaninova E. I., Mikhailov V. O., Lyakhov-
sky V. A., 1996. Numerical modelling of regio-
nal neotectonic movements in the northern
Black Sea. Tectonophysics 266(1-4), 221—231.
Solov’ev A. V., Rogov M. A., 2010. First fission-track
dating of zircons from Mesozoic complexes of
the Crimea. Stratigr. Geol. Correl. 18(3), 298—
306. doi.org/10.1134/S0869593810030068.
Starostenko V., Janik T., Stephenson R., Gryn D.,
Rusakov O., Czuba W., Środa P., Grad M.,
Guterch A., Flüh E., Thybo H., 2016. DOBRE-2
WARR profile: the Earth’s upper crust across
Crimea between the Azov Massif and the north-
eastern Black Sea. Geol. Soc. London Spec.
Publ. 428(1), 199—220. doi: 10.1144/SP428.11.
Starostenko V., Janik T., Yegorova T., Farfuliak L.,
Czuba W., Środa P., Thybo H., Artemieva I.,
Sosson M., Volfman Y., Kolomiyets K., Lysyn-
chuk D., Omelchenko V., Gryn D., Guterch A.,
Komminaho K., Legostaeva O., Tiira T., Tolku-
nov A., 2015. Seismic model of the crust and
upper mantle in the Scythian platform: the DO-
BRE-5 profile across the north western Black
Sea and the Crimean peninsula. Geophys. J.
Int. 201(1), 406—428. doi: 10.1093/gji/ggv018.
Stephenson R. A., Mart Y., Okay A., Robert-
son A. H. F., Saintot A., Stovba S., Kriachtchevs-
kaia O., 2004. Transect VIII: Eastern European
Craton to Arabian Craton (Red Star to Red Sea).
In: The TRANSMED Atlas — the Mediterranean
Region from Crust to Mantle. Vol. XXIII. Berlin:
Springer, 120—127.
Sydorenko G., Stephenson R., Yegorova T., Staro-
stenko V., Tolkunov A., Janik T., Majdanski M.,
Voitsitskiy Z.., Rusakov O., Omelchenko V.,
2016. Geological structure of the northern part
of the Eastern Black Sea from regional seismic
reflection data including the DOBRE-2 CDP
profile. Geol. Soc. London Spec. Publ. 428,
307—321. doi: 10.1144/SP428.15.
Tchaikovsky B., Biletskyi S., Deev S., Demjan O.,
Krasnorudska S., 2006. Ukrainian State Geo-
logic Map of L-36-XXVIII and L-36-XXXIV
(1:200000 scale). Crimea region, State Geologi-
cal Survey (in Ukrainian).
Vakarchuk S., Kharchenko M., Bezkhyzhko O.,
Shevchenko O., Kuzmenko P., Bashkirov G.,
Ishchenko I., Kitchka A., 2016. The discovery
of the Subbotin oil field offshore Ukraine: Geo-
logical challenges and exploration lessons.
Conference: Petroleum Systems of Alpine-
Mediterranean Fold Belts and Basins, AAPG
European Region Conference & Exhibition, At
Bucharest 19—20 May, 2016, P. 32—33.
Vincent S. J., Carter A., Lavrishchev A., Price S. P.,
Barabadze T. G., Hovius N., 2010. The exhu-
mation of the western Greater Caucasus: A
thermochronometric study. Geol. Mag. 148(1),
1—21. doi: 10.1017/S0016756810000257.
Vincent S. J., Morton A. C., Carter A., Gibbs S., Ba -
rabadze T. G., 2007. Oligocene uplift of the wes-
tern Greater Caucasus: An effect of ini tial Ara-
bia-Eurasia collision. Terra Nova 19(2), 160—
166. doi: 10.1111/j.1365-3121.2007. 00731.x.
Yegorova T., Gobarenko V., 2010. Structure of the
Earth’s crust and upper mantle of West and
East Black Sea Basins revealed from geophysi-
cal data and its tectonic implications. In: Sedi-
mentary Basin Tectonics from the Black Sea and
Caucasus to the Arabian Platform. Geol. Soc.
London Spec. Publ. 340, 23—42. doi: 10.1144/
SP340.3.
|