New method for edges detection of magnetic sources using logistic function
The tilt angle of the analytic signal amplitude (TA) is defined as the arctangent of the ratio of the first vertical derivative to the total horizontal derivative of the analytic signal amplitude. It is commonly used as a useful tool to estimate edges of magnetic sources because its value is slightl...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут геофізики ім. С.I. Субботіна НАН України
2018
|
Назва видання: | Геофизический журнал |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/145653 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | New method for edges detection of magnetic sources using logistic function / L.T. Pham, E. Oksum, T.D. Do, M.L. Huy // Геофизический журнал. — 2018. — Т. 40, № 6. — С. 127-135. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-145653 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1456532019-01-26T01:23:13Z New method for edges detection of magnetic sources using logistic function Pham, L.T. Oksum, E. Do, T.D. Huy, M.L. The tilt angle of the analytic signal amplitude (TA) is defined as the arctangent of the ratio of the first vertical derivative to the total horizontal derivative of the analytic signal amplitude. It is commonly used as a useful tool to estimate edges of magnetic sources because its value is slightly dependence on the direction of magnetization vector, and it is more effective in estimating the edges of the bodies than the analytic signal amplitude and the standard tilt angle. Based on logistic function (L) that has the same shape with the shape of arctangent function, and the derivatives of the analytic signal amplitude, we introduce some new filters which also can reduce the effect of the magnetization direction. Угол наклона амплитуды аналитического сигнала (TA) определяют как арктангенс отношения первой производной вертикального градиента к суммарной горизонтальной производной амплитуды аналитического сигнала. Определение этого угла обычно используют как полезный метод для оценки граней магнитных источников, поскольку его величина незначительно зависит от направления намагниченности. По аналитической функцией (L), что имеет одинаковую форму с формой функции арктангенс, введены некоторые новые фильтры, которые также могут уменьшить эффект направления намагниченности. Кут нахилу амплітуди аналітичного сигналу (TA) визначають як арктангенс відношення першої похідної вертикального градієнта до сумарної горизонтальної похідної амплітуди аналітичного сигналу. Визначення цього кута зазвичай використовують як корисний метод для оцінювання граней магнітних джерел, оскільки його величина незначно залежить від напрямку намагніченості. За аналітичною функцією (L), що має однакову форму з формою функції арктангенсу, введено деякі нові фільтри, які також можуть зменшити ефект напрямку намагніченості. 2018 Article New method for edges detection of magnetic sources using logistic function / L.T. Pham, E. Oksum, T.D. Do, M.L. Huy // Геофизический журнал. — 2018. — Т. 40, № 6. — С. 127-135. — Бібліогр.: 11 назв. — англ. 0203-3100 DOI: https://doi.org/10.24028/gzh.0203-3100.v40i6.2018.151033 http://dspace.nbuv.gov.ua/handle/123456789/145653 en Геофизический журнал Інститут геофізики ім. С.I. Субботіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The tilt angle of the analytic signal amplitude (TA) is defined as the arctangent of the ratio of the first vertical derivative to the total horizontal derivative of the analytic signal amplitude. It is commonly used as a useful tool to estimate edges of magnetic sources because its value is slightly dependence on the direction of magnetization vector, and it is more effective in estimating the edges of the bodies than the analytic signal amplitude and the standard tilt angle. Based on logistic function (L) that has the same shape with the shape of arctangent function, and the derivatives of the analytic signal amplitude, we introduce some new filters which also can reduce the effect of the magnetization direction. |
format |
Article |
author |
Pham, L.T. Oksum, E. Do, T.D. Huy, M.L. |
spellingShingle |
Pham, L.T. Oksum, E. Do, T.D. Huy, M.L. New method for edges detection of magnetic sources using logistic function Геофизический журнал |
author_facet |
Pham, L.T. Oksum, E. Do, T.D. Huy, M.L. |
author_sort |
Pham, L.T. |
title |
New method for edges detection of magnetic sources using logistic function |
title_short |
New method for edges detection of magnetic sources using logistic function |
title_full |
New method for edges detection of magnetic sources using logistic function |
title_fullStr |
New method for edges detection of magnetic sources using logistic function |
title_full_unstemmed |
New method for edges detection of magnetic sources using logistic function |
title_sort |
new method for edges detection of magnetic sources using logistic function |
publisher |
Інститут геофізики ім. С.I. Субботіна НАН України |
publishDate |
2018 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/145653 |
citation_txt |
New method for edges detection of magnetic sources using logistic function / L.T. Pham, E. Oksum, T.D. Do, M.L. Huy // Геофизический журнал. — 2018. — Т. 40, № 6. — С. 127-135. — Бібліогр.: 11 назв. — англ. |
series |
Геофизический журнал |
work_keys_str_mv |
AT phamlt newmethodforedgesdetectionofmagneticsourcesusinglogisticfunction AT oksume newmethodforedgesdetectionofmagneticsourcesusinglogisticfunction AT dotd newmethodforedgesdetectionofmagneticsourcesusinglogisticfunction AT huyml newmethodforedgesdetectionofmagneticsourcesusinglogisticfunction |
first_indexed |
2025-07-10T22:10:06Z |
last_indexed |
2025-07-10T22:10:06Z |
_version_ |
1837299596519276544 |
fulltext |
NEW METHOD FOR EDGES DETECTION OF MAGNETIC SOURCES USING LOGISTIC FUNCTION
Геофизический журнал № 6, Т. 40, 2018 127
Introduction. Edge detection is an im por-
tant field in magnetic interpretation. There
are many methods for detecting edges, most
of which are based on the vertical or ho ri-
zontal derivatives of the field. The most com-
monly used filter is the total horizontal de-
rivative of the potential field [Cordell, 1979;
Cordell, Grauch, 1985]. The greatest advan-
tage of this filter is its low sensitivity to the
noise in the data because it only requires the
first order horizontal derivatives of the field.
However, the filter requires a reduction to
DOI: 10.24028/gzh.0203-3100.v40i6.2018.151033
New method for edges detection of magnetic
sources using logistic function
L. T. Pham1, E. Oksum2, T. D. Do1, M. L. Huy3, 2018
1VNU University of Science, Faculty of Physics, Department of Geophysics,
Hanoi, Vietnam
2Süleyman Demirel University, Engineering Faculty,
Department of Geophyisical Engineering, Isparta, Turkey
3Institute of Geophysics, Vietnam Academy of Science and Technology,
Hanoi, Vietnam
Received 31 July 2018
Кут нахилу амплітуди аналітичного сигналу (TA) визначають як арктангенс відно-
шення першої похідної вертикального градієнта до сумарної горизонтальної похідної
амплітуди аналітичного сигналу. Визначення цього кута зазвичай використовують як
корисний метод для оцінювання граней магнітних джерел, оскільки його величина
незначно залежить від напрямку намагніченості. За аналітичною функцією (L), що
має однакову форму з формою функції арктангенсу, введено деякі нові фільтри, які
також можуть зменшити ефект напрямку намагніченості. Крім того, ці фільтри ство-
рюють амплітудні максимуми над межами джерел і компенсують вплив аномалій від
незначних і глибоких джерел. Можливість використання фільтрів продемонстровано
на чистій і спотвореній шумами синтетичних 3D магнітних моделях, коли отримані
положення граней добре збігаються з реальними межами. Ефективність фільтрів
оцінено також порівнянням їх з даними інших методів виявлення положення граней.
Показано, що нові фільтри менш чутливі до варіацій глибини розташування джере-
ла тіл і що використання модифікованої логістичної функції (Lk) може забезпечити
кращі результати, ніж амплітуда аналітичного сигналу (AS), амплітуда аналітичного
сигналу кута нахилу (AT), TA- і L-фільтри. Фільтри також застосовують до магнітних
даних ділянки на півдні центрального В’єтнаму. Запропоновані фільтри є корисним
інструментом для якісної інтерпретації магнітних спостережень.
Ключові слова: логістична функція, кут нахилу, амплітуда аналітичного сигналу,
визначення граней, інтерпретація магнітних даних.
the pole or pseudo-gravity transformation
[Cordell, Grauch, 1985] that has serious li-
mi tations when used in low latitude are as.
Furthermore, the edge detection result is
dominated by the response from the shal-
lower sources that produce strong ano ma-
lies, and hence it cannot display the strong
and weak amplitude anomaly edges simul-
taneously [Cooper, Cowan, 2008]. In order
to make both the shallow and deep sources
visible simultaneously, [Miller, Singh, 1994]
proposed using tilt angle that based on the
L. T. PHAM, E. OKSUM, T. D. DO, M. L. HUY
128 Геофизический журнал № 6, Т. 40, 2018
ratio of vertical derivative to total horizon-
tal derivative, [Cooper, Cowan, 2006] used
horizontal tilt angle, and [Wijns et al., 2005]
used the theta map method. However, all
three methods are sensitive to dip and mag-
netization effects [Pilkington, Tschirhart,
2017]. Another method which is also based
on tilt angle is introduced by [Verduzco et
al., 2004], called total horizontal derivative
of tilt angle. Although the method is not
influenced by dip or magnetization effects,
it generates some false edges [Pilkington,
Tschirhart, 2017]. Another commonly used
method, known as the analytic signal ampli-
tude method, is introduced by [Nabighian,
1972] and [Roest et al., 1992]. They showed
that, in the 2D case, the shape of the analytic
signal amplitude is independent of the direc-
tion of the ambient magnetic field and the
direction of source magnetization. However,
[Li, 2006] pointed that this independent is
lost in the 3D case. An enhanced analytic sig-
nal is introduced by [Hsu et al., 1996]. They
used the higher order derivatives to detect
the edges of magnetic sources. Although the
method can effectively reduce the interfer-
ence due to adjacent geological bodies, the
effect of noise increases. Another disadvan-
tage of the method is that it cannot display
large and small amplitude edges simultane-
ously. [Ansari, Alamdar, 2011] suggested the
use of the analytic signal amplitude of the
tilt angle as a balanced edge detection filter.
It is more effective than the analytic signal,
but it still performs poorly in detecting all the
edges of the body [Cooper, 2014]. G. Cooper
proposed modified analytic signal amplitude
that based on tilt angle method to balance the
different amplitude edges. The advantage of
the method is reducing the dependence of
the analytic signal amplitude of magnetic
anomaly on the direction of magnetization.
In this paper, we describe a new edge de-
tection filter based on the logistic function.
We also improve this by introducing a modi-
fied logistic function resulting as an enhance-
ment in delineating the geologic contacts.
Theory. The analytic signal of magnetic
anomaly M is defined in 3D by [Roest et al.,
1992] as
€ € €( , ) M M MAS x y x y i z
x y z
∂ ∂ ∂
= + +
∂ ∂ ∂
, (1)
where 1i = − and €x , €y and €z are unit vec-
tors in x, y and z directions, respectively. From
Eq. 1 it follows that the amplitude of the ana-
lytic signal is given by:
22 2
( , ) M M MAS x y
x y z
⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
. (2)
The ratio of the first vertical derivative and
total horizontal derivatives of the analytic sig-
nal amplitude is:
22
AS
zR
AS AS
x y
∂
∂=
⎛ ⎞∂ ∂⎛ ⎞ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
. (3)
G. Cooper used arctangent of R to delin-
eate the edges of the magnetic sources, called
it the tilt angle of analytic signal amplitude
(TA) [Cooper, 2014]. He showed that the TA is
theoretically independent of the source mag-
netization vector direction for the 2D case,
and it can reduce the effect of the magnetiza-
tion direction for the 3D case. The TA filter is
sensitive to the noise in the data because it
uses second order derivatives, and especially
the ones that use vertical derivative. To reduce
the noise effect, [Cooper, 2014] proposed us-
ing the zero order analytical signal amplitude.
Although this filter has a much reduced noise
sensitivity, the edges of the magnetic sources
are not as sharply defined. Here, we introduce
a new filter based on logistic function and the
ratio of the first vertical derivative and total
horizontal derivatives of the AS, which is de-
fined as
1
1 RL
e−=
+
. (4)
The idea of producing this filter is that
logistic function is a mathematical func-
tion having a characteristic «S»-shaped
curve (or sigmoid curve) that is the same
shape with the shape of arctangent function.
NEW METHOD FOR EDGES DETECTION OF MAGNETIC SOURCES USING LOGISTIC FUNCTION
Геофизический журнал № 6, Т. 40, 2018 129
Therefore, it also can reduce the effect of the
magnetization direction, like the TA filter.
Similarly to the tilt angle of analytic signal
amplitude, using logistic function leads to
a more balanced response. Both methods
are effective in enhancing the edges that
produce only low-amplitude analytic signal
maxima. Nonetheless, the edges of the shal-
low source are clear and refined, whereas the
edges of deep source are clear but diffuse. In
this study, we resolved this issue of the logis-
tic filter by using a modified logistic func-
tion, which is defined as
1
k RL
k e−=
+
, (5)
Where k is a positive constant less than
one.
In order to demonstrate the feasibility of
L and Lk filters, we choose three other fre-
quently used filters to compare the boundary
detection results. They are the AS, the AT and
the TA.
Synthetic Example. The efficiency of the
new methods to enhance the detection of
edges of the magnetic source bodies is stud-
ied by analysis of two synthetic examples. The
first example involves a single prism with pa-
rameters shown in Table 1.
Fig. 1, a shows the magnetic anomaly due
to the single prism model whose outlines are
shown in black. The results of AS, AT, TA, L,
and Lk of the field are shown in Fig. 1, b―f
respectively. It can be observed that the AS
is only effective in enhancing two of the four
edges of the causative body. The AT is more
effective than the AS in enhancing all the
edges of the causative body. However, the
edges detected by the AT are not precise, and
it is clearly noisier than the other filters. Both
the L and the TA yield similar results, they
enhance all the edges, yet their
obtained results are diffused
to some extent. By comparison
among the results in Fig. 1, we
can see that Lk can not only de-
lineate the edges of the source
body clearly and precisely, but
also give better resolution of the
edges than other filters.
The second example involves three prisms
models with the same dimensions in size
but in increasing depths. Their parameters
are shown in Table 2. The outlines in plain
view of the prismatic sources are shown by
the black lines in all figures. In order to test
the stability of the L and Lk filters, we added
random noise with amplitude equal to 5 % of
the data amplitude to the magnetic anomaly
data due to the prisms (Fig. 2). Because the
L filter uses second order derivatives which
increase the noise influence. Therefore, we
need to reduce the noise effect first before
we use the filter to detect the edges. Using
upward continuation of the magnetic data,
the noise effect can be reduced. Fig. 2, b―f
display the results of the AS, AT, TA, L and
Lk after upward continuation of 1 km, re-
spectively. In this case, as can be seen from
Fig. 2, b, c, the AS is also only effective in
delineating two of the four edges of each
causative body, whereas the AT represents a
poor view of the edges. Fig. 2, d shows the
results calculated by the TA filter and Fig. 2,
e is the results from the application of the L
filter. It can be observed that the TA and the
L filters can enhance all the edges of caus-
ative bodies. The edges are clearly enhanced
more sharply, compared with AS and AT fil-
ters. Fig. 2, f displays the edges detected by
the Lk filter. It can be clearly observed that
the Lk filter can not only balance anomalies
from shallow and deep sources, but also give
a higher resolution, and can delineate the
edges more clearly and precisely. The ampli-
tude of the response from the two causative
bodies is similar, although the response from
the deeper causative body is rather diffuse.
Real Data Example. In order to demon-
strate the practical applicability of the sug-
gested new filters, we consider their applica-
Ta b l e 1. Parameters of the single prism model
Center coordinates 31.5 km; 31.5 km Length×Width 30×30 km
Inclination 15° Depth of top 2 km
Declination 25° Depth of bottom 3.5 km
Magnetization 5 A/m Rotation angle 0°
L. T. PHAM, E. OKSUM, T. D. DO, M. L. HUY
130 Геофизический журнал № 6, Т. 40, 2018
Fig. 2. Test results of the three prism models P-1-3: a ― synthetic magnetic anomaly of three prisms, b ― AS, c ―
AT, d ― TA, e ― L, f ― Lk with k=0.01.
Fig. 1. Test results of the single prism model (see Table 1): a ― synthetic magnetic anomaly of the single prism
model, b ― AS, c ― AT, d ― TA, e ― L, f ― Lk, with k=0.01.
NEW METHOD FOR EDGES DETECTION OF MAGNETIC SOURCES USING LOGISTIC FUNCTION
Геофизический журнал № 6, Т. 40, 2018 131
Fig. 3. Location of the study area within (a), the total field magnetic anomaly of the study area (b).
L. T. PHAM, E. OKSUM, T. D. DO, M. L. HUY
132 Геофизический журнал № 6, Т. 40, 2018
Fig. 4. The total field magnetic anomaly at upward continuation level of 1 km (a), b ― AS, c ― AT, d ― TA, e ― L,
f ― Lk, with k=0.01.
tion to field magnetic data from an area in
south-central Vietnam. The study area lies
between longitude 107.8°E and 109.3°E and
latitude 12°N and 13.5°N, covering an area of
approximately 27000 km2 (Fig. 3, a). The total
field magnetic anomaly data (Fig. 3, b) are
NEW METHOD FOR EDGES DETECTION OF MAGNETIC SOURCES USING LOGISTIC FUNCTION
Геофизический журнал № 6, Т. 40, 2018 133
compiled by Geological Survey of Japan and
Coordinating Committee for coastal and off-
shore geoscience programs in East and South-
east Asia [Geological …, 1996]. The magnetic
anomaly values vary from −280 to +50 nT with
many positive and negative anomalies that
have E-W trends. As a pre-process of the
data, upward continuation of the total field
magnetic anomaly was performed to reduce
noise effect (Fig. 4, a). The upward continu-
ation height used is 1 km. The upward con-
tinuation produced results that are smoother
and less sensitive to random noise than the
original anomaly data, but will not change
the primary shapes.
Fig. 4, b shows the AS of the magnetic
data in Fig. 4, a. We can see that the AS fil-
ter performs poor, and it is dominated by the
high amplitude anomalies. Fig. 4, c shows the
AT of the magnetic data. As expected (and
discussed in the above sections), it is clearly
more noisy than the results of using other
filters, and it gives insufficient results to ac-
curately determine the
boundary of the magnet-
ic sources. Fig. 4, d and
e show the TA and L, re-
spectively. By comparing
the results, we can see
that the TA and FS filters
provided similar results,
and they are effective in
bringing out the details
of the small amplitude
anomalies. Fig. 4. f dis-
plays the results of the Lk
filter. It can be observed
from this figure that the
Lk filter cannot only bal-
ance the large and small amplitude anoma-
lies, but provides the best resolution of the
magnetic boundaries in the study area.
Conclusions. We have presented two new
edge detection filters that are based on logis-
tic function and the ratio of the first vertical
derivative and total horizontal derivatives of
the analytic signal amplitude. As in the tilt
angle of analytic signal, the L and Lk filters
can be applied directly to the magnetic data.
The disadvantage of the filters is that they
are sensitive to noise. Using upward continu-
ation of magnetic data can help reduce the
effects of noise, and increase the coherency
of the solutions. The filters have been dem-
onstrated on two synthetics and real magnet-
ic data. The results showed that both the L
and Lk filters can balance the large and small
amplitude edges, and can bring out more de-
tails than the AS and AT filters. The results
also showed that the Lk filter give a higher
resolution, compared with other edge detec-
tion filters.
Ta b l e 2. Parameters of the three prism model
Prism ID P-1 P-2 P-3
Center coordinates 12 km; 31.5 km 31.5 km; 31.5 km 51 km; 31.5 km
Inclination 12° 18° 20°
Declination 25° 26° 24°
Magnetization 5 A/m 5 A/m 5 A/m
Length × Width 45×10 km 45×10 km 45×10 km
Depth of the top 1 km 2 km 3 km
Depth of the bottom 2 km 3 km 4 km
Rotation angle 0° 0° 0°
New method for edges detection of magnetic
sources using logistic function
L. T. Pham1, E. Oksum2, T. D. Do1, M. L. Huy3, 2018
The tilt angle of the analytic signal amplitude (TA) is defined as the arctangent of the
ratio of the first vertical derivative to the total horizontal derivative of the analytic signal
amplitude. It is commonly used as a useful tool to estimate edges of magnetic sources
L. T. PHAM, E. OKSUM, T. D. DO, M. L. HUY
134 Геофизический журнал № 6, Т. 40, 2018
Ansari, A. H., & Alamdar, K. (2011). A new edge
detection method based on the analytic sig-
nal of tilt angle (ASTA) for magnetic and
gravity anomalies. Iranian Journal of Science
and Technology, 35(2), 81―88. doi: 10.22099/
ijsts.2011.2131.
Cooper, G. R. J. (2014). Reducing the dependence
of the analytic signal amplitude of aeromagnet-
ic data on the source vector direction. Geophys-
ics, 79(4), J55―J60. https://doi.org/10.1190/
geo2013-0319.1.
Cooper, G. R. J., & Cowan, D. R. (2008). Edge en-
hancement of potential-field data using nor-
malized statistics. Geophysics, 73(3), H1―H4.
https://doi.org/10.1190/1.2837309.
Cooper, G. R. J., & Cowan, D. R. (2006). Enhanc-
ing Potential Field Data Using Filters Based
on the Local Phase. Computers & Geosciences,
32(10), 1585―1591. https://doi.org/10.1016/j.
cageo.2006.02.016.
Cordell, L. (1979). Gravimetric Expression of
graben faulting in Santa Fe Country and the
Espanola Basin, New Mexico. In R. V. Inger-
soll (Ed.), Guidebook to Santa Fe Country (pp.
59―64). New Mexico Geological Society, So-
corro.
Cordell, L., & Grauch, V. J. S. (1985). Mapping
References
Basement Magnetization Zones from Aero-
magnetic Data in the San Juan Basin, New
Mexico. In The Utility of Regional Gravity and
Magnetic Anomaly Maps (pp. 181―197). Soci-
ety of Exploration Geophysicists, Tulsa.
Geological Survey of Japan and Coordinating
Committee for Coastal and Offshore Geosci-
ence Programs in East and Southeast Asia
(CCOP). (1996). Magnetic anomaly map of
East Asia 1:4 000 000. CD-ROM.
Hsu, S. K., Coppense, D., & Shyu, C. T. (1996). High-
resolution detection of geologic boundaries
from potential field anomalies: An enhanced
analytic signal technique. Geophysics, 61(2),
1947―1957. https://doi.org/10.1190/1.1443966.
Li, X., (2006). Understanding 3D analytic sig-
nal amplitude. Geophysics, 71(2), L13―L16.
https://doi.org/10.1190/1.2184367.
Miller, H. G., & Sing, V. (1994). Potential field tilt
a new concept for location of potential field
sources. Journal of Applied Geophysics, 32(2-
3), 213―217. https://doi.org/10.1016/0926-
9851(94)90022-1.
Nabighian, M. N. (1972). The analytic signal of
two-dimensional magnetic bodies with po ly-
gonal cross-section: Its properties and use of
because its value is slightly dependence on the direction of magnetization vector, and it
is more effective in estimating the edges of the bodies than the analytic signal amplitude
and the standard tilt angle. Based on logistic function (L) that has the same shape with
the shape of arctangent function, and the derivatives of the analytic signal amplitude, we
introduce some new filters which also can reduce the effect of the magnetization direc-
tion. Other notable features of these filters are that they produce amplitude maxima over
the edges of sources and that they balance anomalies from shallow and deep sources. The
feasibility of the proposed filters is demonstrated on noise-free and noisy synthetic mag-
netic data from two 3D models where the obtained results coincide well with the actual
edges. The effectiveness of the filters is also evaluated by comparing it with other edge
detection methods. The results also show that our filters are less sensitive to variations
in the depth of the source bodies and that a modified logistic function (Lk) can achieve
better edge detection results than the analytic signal amplitude (AS), the analytic signal
amplitude of the tilt angle (AT), the TA and L filters. The filters are also applied to real
magnetic data from an area in south-central Vietnam, and the results demonstrate that
the proposed filters is a useful tool for the qualitative interpretation of magnetic data.
Key words: logistic function, tilt angle, analytic signal amplitude, edge detection,
interpretation of magnetic data.
NEW METHOD FOR EDGES DETECTION OF MAGNETIC SOURCES USING LOGISTIC FUNCTION
Геофизический журнал № 6, Т. 40, 2018 135
automated anomaly interpretation. Geo physics,
37(3), 507―517. https://doi.org/10.1190/
1.1440276.
Pilkington, M., & Tschirhart, V. (2017). Practical
considerations in the use of edge detectors for
geologic mapping using magnetic data. Geo-
physics, 82(3), J1―J8. https://doi.org/10.1190/
geo2016-0364.1.
Roest, W. R., Verhoef, J., & Pilkington, M. (1992).
Magnetic interpretation using the 3-D analytic
signal. Geophysics, 57(1), 116―125. https://doi.
org/10.1190/1.1443174.
Verduzco, B., Fairhead, J. D., Green, C. M., & Mac-
Ken zie, C. (2004). New insights to magne tic
de rivatives for structural mapping. The Lea-
ding Edge, 23(2), 116―119. https://doi.org/
10.1190/1.1651454.
Wijns, C, Perez, C., & Kowalczyk, P. (2005). The ta
map: Edge detection in magnetic data. Geo-
physics, 70(4), L39―L43. https://doi.org/10.1190/
1.1988184.
|