Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits
(ARPD) in oil and gas equipment, and consider some current views on the state of ARPD problem in oilfield equipment and possible methods for its solution using magnetic treatment. Findings. The technology of magnetic fields application in prevention of asphalt-resin-paraffin deposits is introduced i...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
УкрНДМІ НАН України, Інститут геотехнічної механіки НАН України
2017
|
Schriftenreihe: | Розробка родовищ |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/145689 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits / M. Kharchenko, A. Manhura, S. Manhura, I. Lartseva // Розробка родовищ: Зб. наук. пр. — 2017. — Т. 11, вип. 2. — С. 28-33. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-145689 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1456892019-01-27T01:23:24Z Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits Kharchenko, M. Manhura, A. Manhura, S. Lartseva, I. (ARPD) in oil and gas equipment, and consider some current views on the state of ARPD problem in oilfield equipment and possible methods for its solution using magnetic treatment. Findings. The technology of magnetic fields application in prevention of asphalt-resin-paraffin deposits is introduced in the article. The obtained results of production fluid magnetic treatment make it possible to use it in oil wells equipped with pumping units, as well as in free flow production method or in wells operated by electric-centrifugal pump, and in oil pipelines Мета. Обґрунтувати використання магнітного поля для запобігання асфальтосмолистопарафінових відкладень на нафтогазовому обладнанні, а також розглянути сучасні погляди на стан проблеми асфальтосмолистопарафінових відкладень на нафтопромисловому обладнанні та можливі методи її вирішення за допомогою магнітної обробки. Результати. Запропоновано технологію використання магнітного поля для запобігання асфальто-смолистопарафінових відкладень. Отримані результати використання магнітної обробки свердловинної продукції дають можливість використовувати її у нафтопромисловій практиці як у свердловинах, які обладнанні штанговими свердловинними насосними установками, так і при експлуатації свердловин фонтанним способом або свердловин, що експлуатуються електровідцентровими насосами, а також на нафтопроводах. Цель. Обосновать использование магнитного поля для предотвращения асфальтосмолистопарафиновых отложений на нефтегазовом оборудовании, а также рассмотреть современные взгляды на состояние проблемы асфальтосмолистопарафинових отложений на нефтепромысловом оборудовании и возможные методы ее решения с помощью магнитной обработки. Результаты. Предложена технология использования магнитного поля для предотвращения асфальтосмолистопарафиновых отложений. Полученные результаты использования магнитной обработки скважинной продукции, дают возможность использовать ее в нефтепромысловой практике как в скважинах, оборудованных штанговыми скважинными насосными установками, так и при эксплуатации скважин фонтанным способом или скважин, эксплуатируемых электроценторобежными насосами, а также на нефтепроводах. The present study would have been impossible without support from Poltava National Technical Yuri Kondratyuk University administration. We express our sincere gratitude for the opportunity to conduct tests in modern Laboratory of Oil and Gas Technologies. 2017 Article Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits / M. Kharchenko, A. Manhura, S. Manhura, I. Lartseva // Розробка родовищ: Зб. наук. пр. — 2017. — Т. 11, вип. 2. — С. 28-33. — Бібліогр.: 12 назв. — англ. 2415-3435 DOI: https://doi.org/10.15407/mining11.02.028 http://dspace.nbuv.gov.ua/handle/123456789/145689 622.279 en Розробка родовищ УкрНДМІ НАН України, Інститут геотехнічної механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
(ARPD) in oil and gas equipment, and consider some current views on the state of ARPD problem in oilfield equipment and possible methods for its solution using magnetic treatment. Findings. The technology of magnetic fields application in prevention of asphalt-resin-paraffin deposits is introduced in the article. The obtained results of production fluid magnetic treatment make it possible to use it in oil wells equipped with pumping units, as well as in free flow production method or in wells operated by electric-centrifugal pump, and in oil pipelines |
format |
Article |
author |
Kharchenko, M. Manhura, A. Manhura, S. Lartseva, I. |
spellingShingle |
Kharchenko, M. Manhura, A. Manhura, S. Lartseva, I. Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits Розробка родовищ |
author_facet |
Kharchenko, M. Manhura, A. Manhura, S. Lartseva, I. |
author_sort |
Kharchenko, M. |
title |
Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits |
title_short |
Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits |
title_full |
Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits |
title_fullStr |
Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits |
title_full_unstemmed |
Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits |
title_sort |
analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits |
publisher |
УкрНДМІ НАН України, Інститут геотехнічної механіки НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/145689 |
citation_txt |
Analysis of magnetic treatment of production fluid with high content of asphalt-resin-paraffin deposits / M. Kharchenko, A. Manhura, S. Manhura, I. Lartseva // Розробка родовищ: Зб. наук. пр. — 2017. — Т. 11, вип. 2. — С. 28-33. — Бібліогр.: 12 назв. — англ. |
series |
Розробка родовищ |
work_keys_str_mv |
AT kharchenkom analysisofmagnetictreatmentofproductionfluidwithhighcontentofasphaltresinparaffindeposits AT manhuraa analysisofmagnetictreatmentofproductionfluidwithhighcontentofasphaltresinparaffindeposits AT manhuras analysisofmagnetictreatmentofproductionfluidwithhighcontentofasphaltresinparaffindeposits AT lartsevai analysisofmagnetictreatmentofproductionfluidwithhighcontentofasphaltresinparaffindeposits |
first_indexed |
2025-07-10T22:17:52Z |
last_indexed |
2025-07-10T22:17:52Z |
_version_ |
1837300065172979712 |
fulltext |
Founded in
1900
National Mining
University
Mining of Mineral Deposits
ISSN 2415-3443 (Online) | ISSN 2415-3435 (Print)
Journal homepage http://mining.in.ua
Volume 11 (2017), Issue 2, pp. 28-33
28
UDC 622.279 https://doi.org/10.15407/mining11.02.028
ANALYSIS OF MAGNETIC TREATMENT OF PRODUCTION FLUID
WITH HIGH CONTENT OF ASPHALT-RESIN-PARAFFIN DEPOSITS
M. Kharchenko1, A. Manhura1*, S. Manhura1, I. Lartseva1
1Department of Oil and Gas Exploitation and Geotechnics, Poltava National Technical Yuri Kondratyuk University, Poltava, Ukraine
*Corresponding author: e-mail mangura2000@mail.ru, tel. +380669345503
АНАЛІЗ МАГНІТНОЇ ОБРОБКИ СВЕРДЛОВИННОЇ ПРОДУКЦІЇ З ВЕЛИКИМ
ВМІСТОМ АСФАЛЬТО-СМОЛИСТО-ПАРАФІНОВИХ ВІДКЛАДІВ
М. Харченко1, A. Мангурa1*, С. Мангура1, І. Ларцева1
1Кафедра видобування нафти і газу та геотехніки, Полтавський національній технічний університет ім. Ю. Кондратюка,
Полтава, Україна
*Відповідальний автор: e-mail mangura2000@mail.ru, тел. +380669345503
ABSTRACT
Purpose. Justification of magnetic field application in order to prevent formation of asphalt-resin-paraffin deposits
(ARPD) in oil and gas equipment, and consider some current views on the state of ARPD problem in oilfield equip-
ment and possible methods for its solution using magnetic treatment.
Methods. Analysis and generalization of the research results of production fluid magnetic treatment using COMSOL
Multiphysics software.
Findings. The technology of magnetic fields application in prevention of asphalt-resin-paraffin deposits is introduced
in the article. The obtained results of production fluid magnetic treatment make it possible to use it in oil wells
equipped with pumping units, as well as in free flow production method or in wells operated by electric-centrifugal
pump, and in oil pipelines.
Originality. The use of high energy magnets based on rare earth materials can reduce asphalt-resin-paraffin deposits
in oil equipment.
Practical implications. The proposed magnetic treatment creates opportunities for field exploitation at the later stages
of development which are characterized by a high content of asphaltenes, resins and paraffins. The results of produc-
tion fluid magnetic treatment have proved the efficiency of this technology, which has doubled a turnaround time.
Keywords: magnetic treatment, magnetic field, oil, asphalt-resin-paraffin deposits, well
1. INTRODUCTION
The current stage of oil industry development in
Ukraine is characterized by the following features: reduc-
tion of oil production volume, increasing number of
inactive and low-debit wells, growth of water cut, scaling
and solid inclusions, etc. The topical task of the industry
now is to reduce the number of inactive, idle and compli-
cated wells.
It is known that the formation of asphalt-resin-paraffin
deposits (ARPD) in economic wells is accompanied by
accidents, mainly due to breakages of sucker rods and
polished rods, which results in multifiold reduction of
their turnaround time (TT) and production volumes.
Different methods are used to control ARPD: the use
of scrapers, well treatment by hot oil and water, flushing
with distillate, organic solvents, aqueous solutions of
surface-active agents (SAA), electric bottom-hole heat-
ing, magnetic treatment and inhibition of the production
fluid, use of hydrocarbon oxidizing bacteria, etc. (Gav-
riluk & Glazkov, 2001).
However, all the known methods of ARPD control are
limited depending on conditions of specific fields. For
example, biotechnological method, which is limited by
high formation pressure and gas factors, high content of
hydrogen sulfide in oil and temperatures above 40 – 50°C,
is recommended for wells operated by rod pumps.
Magnetic treatment has its own requirements to the af-
fected environment, such as gas factor (20 –300 m3/m3),
the presence of ferromagnetic particles in well produc-
tion, the content of asphaltenes and resins no less than
the content of paraffin in oil and so on. Electrical meth-
ods require quite complex ground equipment for sup-
M. Kharchenko, A. Manhura, S. Manhura, I. Lartseva. (2017). Mining of Mineral Deposits, 11(2), 28-33
29
plying electricity to underground heating equipment
(Chow et al., 2000).
However, the problem of ARPD in the oil fields is
topical and needs further improvement of methods for its
solution. Research and experience have discovered the
advantages and disadvantages of different ways of ARPD
control in conditions of specific fields.
Many deposits of Ukraine are characterized by high
temperature of oil saturation with paraffin that reaches
48 – 50°C. In addition, a typical part of paraffin depos-
its is ceresin – crystalline high-molecular paraffin, with
the number of carbon atoms 36 – 56. Ceresins are poor-
ly soluble in oil, and their melting point is 80 – 92°C.
The corresponding composition of paraffin is presented
in Table 1.
Table 1. Homologous composition of paraffins
Components Mass fractions of components
in the wells of Boryslav OGCF, %
Resins 2.33 1.55 3.53 2.47
Asphaltenes 2.19 3.96 5.49 2.30
Paraffins 23.82 26.54 56.29 30.57
Ceresin 5.00 11.00 34.00 25.00
Ceresin content in the composition of ARPD can be
predominant. For example, according to the data in one
of the production wells, 70.5% of the selected sediment
mass was ceresin.
According to the industrial observations, it was found
that paraffin deposits in production wells of Ukraine
decrease with increasing debits of wells and insignificant
water content in oil.
There are two known stages of ARPD formation and
growth. The first stage is the crystal nucleation and
growth of paraffin crystals directly on the contact surface
with oil. The second stage – precipitation of larger crys-
tals on the surface covered with paraffin.
The formation of ARPD is significantly affected by
the following factors:
– decrease of pressure on the bottom hole and the related
hydrodynamic equilibrium of gas-liquid mixture (GLM);
– intensive gassing;
– drop of temperature in the reservoir and borehole;
– changing speed of the GLM and its individual com-
ponents movement;
– hydrocarbon composition in each phase of the mixture;
– ratio of phases volume;
– condition of the pipes surface.
The intensity of ARPD formation depends on the
prevalence of one or more factors that may vary over
time and depth, so the number and nature of the deposits
are not permanent (Klassen, 1982).
When bottomhole pressure is less than saturation
pressure of oil aeration, the system equilibrium is dis-
turbed, which increases the volume of the gas phase, and
the liquid phase becomes unstable. This leads to the
separation of paraffin not only in the reservoir but also in
the well, starting from the bottomhole.
In pumping operating technology, the pressure on the
pump sunction may be less than the pressure of oil aera-
tion. This can lead to paraffin deposition in the receiving
part of the pump and on the walls of the production
string. There are two zones in the tubing above the pump.
The first zone is located right above the pump: here the
pressure increases dramatically and the saturation pres-
sure also grows. The probability of deposition in this
zone is minimal.
The second zone is characterized by the pressure re-
duction to the level of the saturation pressure and below,
where intensive paraffin precipitation starts.
In flow wells, if the pressure in the bottomhole is
maintained equal to the saturation pressure, paraffin
precipitation can be expected in the tubing string.
It is evident from practice that the main objects in
which ARPD are formed are well pumps, tubing, flow
lines from wells, reservoirs of gathering stations (Klas-
sen, 1982).
The most intensive paraffin deposition is observed on
the inner surface of the tubing. The thickness of sedi-
ments gradually increases from the starting point of their
formation at the depth of 500 – 900 m and reaches a
maximum at the depth of 50 – 200 m from the wellhead,
and then it decreases to the thickness of 1 – 2 mm in the
wellhead (Fig. 1).
Figure 1. Deposition of ARPD over the well depth
As the depth decreases, the content of asphalt-resins
in ARPD also goes down, while the amount of solids and
solid paraffins increases (Fig. 2).
Figure 2. Deposition of ARD and paraffins over the well depth
The closer to the wellhead, the more ceresins are ob-
served in ARPD composition, and, consequently, the
higher structural strength of the deposits.
M. Kharchenko, A. Manhura, S. Manhura, I. Lartseva. (2017). Mining of Mineral Deposits, 11(2), 28-33
30
Oil is a complex mixture in terms of chemical com-
position. Depending on the structure and the external
environment, its components may be in different states of
aggregation. Temperature reduction causes change in the
physical state of the components, leading to the formation
of paraffin crystallization centers and their growth.
Laboratory studies have shown that the rate of paraf-
fins formation has an effect on gas bubbling process and
their behavior in the flow of mixture. It is known that gas
bubbles have the ability to float suspended particles of
paraffin. When bubbles contact with the pipes surface,
the paraffin particles come into contact with the wall and
deposit on it.
Further, the process of paraffin deposition increases
because of its hydrophobicity. A layer of paraffin crystals
and gas bubbles is formed on the pipe wall. The less gas
saturation of the layer, the greater density it has. There-
fore, denser sediments are formed at the bottom of the
lifting pipes, where gas bubbles are small and have great-
er force of adhesion to paraffin crystals and pipe walls.
The intensity of ARPD formation largely depends on
the rate of fluid flow. In laminar mode, i.e. at low flow
rates, the formation of ARPD is quite slow. With rate
increase (during transition to turbulent flow mode), dep-
osition intensity initially increases. Further increase of
liquid-gas mixture (LGM) rate leads to decrease in
ARPD intensity, as the high rate of fluid flow allows
paraffin to keep the crystals in suspension state and carry
them out of the well. Furthermore, the moving flow
breaks a part of deposits off the pipe walls, which ex-
plains the sharp decrease in the amount of deposits in the
zone of 0 – 50 m from the wellhead. At high rates, the
flow of the mixture cools slower than at low ones. In its
turn, the ARPD formation slows down at low rates (Pisa-
reva, Kamenchuk, Andreeva, & Unger, 2005).
The formation of deposits is also affected by the state
of pipes surface. Microroughnesses are the sources of
vortex formation and layer destruction, they also act as
speed retarders near the pipe wall. This is the reason for
formation of crystallization centers, sticking of paraffin
crystals to the pipe surface, blocking of their movement
between the bumps and hollows of the surface.
The process of ARPD formation has an adsorption
character. Adsorption processes are accompanied by the
appearance of double electric layer on the surface of
paraffin contact with gas-oil flow.
In case of mechanical violation of the layer equilibri-
um on the surface of the pipe or paraffin layer, there
appear uncompensated charges of static electricity, in
other words electrification takes place on the pipe surface
and on the surface of paraffin crystals, which enhances
paraffin adhesion to metal.
It is assumed that magnetic fields effect is one of the
most advanced physical methods. Magnetic devices were
first used to prevent ARPD in the fifties of the last centu-
ry, but because of its low efficiency this method did not
become widespread. In particular, there were no magnets
that could work long and steadily in a well.
The period of 1995 – 2015 was marked by the renewed
interest in the use of magnetic field effect on ARPD, due
to the appearance on the market of a wide range of high-
energy magnets based on rare earth elements.
2. THE MAIN PART
Recently, interest in the use of magnetic fields for
treatment of production fluid to prevent ARPD has
increased significantly, due to the appearance on the
market of a wide range of high-energy magnets based
on rare earth materials. It has been found that under the
influence of a magnetic field, the moving fluid becomes
the media causing the destruction of units comprising
submicron ferromagnetic microparticles of iron com-
pounds, with concentration of 10 – 100 g/t in oil and
associated water.
Each unit contains from several hundred to several
thousands of microparticles, because the destruction of
units causes a sharp (100 – 1000 times) increase in the
concentration of paraffins crystallization and formation
of micron size gas bubbles on the surface of ferromagnet-
ic particles. As a result of units destruction, paraffin
crystals precipitate as finely dispersed, voluminous, sta-
ble suspension, and the growth of deposits rate is reduced
proportionally to the decrease in average size of fallen
paraffin crystals in the solid phase (Zhang, Wang, Wang,
& Zhang, 2015).
Formation of micro gas bubbles in the centers of
crystallization after magnetic treatment creates, accord-
ing to some researchers, the gas-lifting effect, leading to
a certain growth of wells production rate. Magnetic
treatment of oil, including oil and gas mixtures produced
in wells, was intended to prevent (or significantly reduce)
the formation ARPD and salts in the tubing and reduction
of surface corrosion of pipelines (Tung et al., 2001).
One of the most important results of magnetic
treatment is the occurrence of gas micro bubbles formed
on the surface of the iron particles. Studies have shown
that these micro bubbles have electric charge and high
adsorption activity with respect to organic and mineral
deposits.
After magnetic treatment, such bubbles provide liquid
detergent with properties similar to those that occur when
washing powder or soap is added to water. For magnetic
treatment effect to manifest in a number of processes, it
is necessary to have a combination of several factors.
This explains the poor restorability typical for magnetic
treatment (Suzuki, Kodera, Matsunaga, & Kurobe, 1993).
However, the methods of analysis of the substance
and hydrodynamic conditions of liquids flow make it
possible to create or select technological processes in
which industrially important effects consistently appear.
It is possible to predict the expected effects in each case,
and to prove from a physical point of view the effects
already observed.
The effect of magnetic field on the formation of par-
affin deposits in the lab helped to solve several problems
in the selection of permanent magnets for this or that
well in a particular field.
The test which indicates the presence of ferromagnet-
ic particles – the first crystals seeds of ARPD – in bore-
hole production by filtration of oils, can prove reasona-
bility of magnetic field processing of the product. The
study of rheological behavior of oils after magnetic
treatment allowed to conclude that magnetic field influ-
ences their properties different ways (Table 2).
M. Kharchenko, A. Manhura, S. Manhura, I. Lartseva. (2017). Mining of Mineral Deposits, 11(2), 28-33
31
Table 2. Rheological parameters of oil before and after
magnetic treatment at Boryslasv OGCF
Oil η, мPа·s τc, Pа Eact, kJ/mole
Before magnetic
treatment 778.1 303.2 12.84
After magnetic
treatment 605.0 267.3 8.21
Decrease of the following oil rheological characteris-
tics has been observed – dynamic viscosity η by 28%,
boundary shearing stress τc by 13%, the activation energy
of viscous flow Eact by 56% (Nalivaiko, Mangura, Man-
gura, & Nalivaiko, 2015).
For the case of a sufficient content of asphalt-resinous
substances and trace iron in the borehole fluid, the labor-
atory analysis of static magnetic field effect on the fliud
makes it possible to determine the exact magnetic field
topology and intensity, as well as the desired temperature
for effective operation of the tool determining the previ-
ous installation depth of the magnetic device.
The magnetic device is convenient in operation be-
cause it does not require maintenance and supply of any
kind of energy. It is most effective to use magnetic de-
vices immediately after well cleanup from existing de-
posits (Zhang, Wang, Li, & Zhang, 2013).
Magnetic device for ARPD control is installed on the
tubing string. Production fluid stream that passes through
the activator is subjected to the influence of strong mag-
netic fields of permanent magnets, which prevents the
formation of asphaltenes, resins, paraffins and salts depos-
its on the inner surface of the tubing (Ivakhnenko, 2006).
It is considered that the use of magnetic devices can
increase the production of wells during overhaul period
by 2 – 5 times, leading to considerable economy and
increase in oil production.
The magnetic device is convenient in operation because
it does not require maintenance and supply of any kind of
energy. The most effective is the use of magnetic devices
immediately after well cleanup from existing deposits.
Magnetic fluid magnetizing device consists of a pipe-
line casing with a soft magnetic material and the magnet-
ic system fixed to the axis of casing. This system com-
prises permanent magnets with sequential magnetization
directions successively installed along the pipeline cas-
ing. These permanent magnets with a circular shape and
radial magnetization are placed on the magnetic circuit.
On the outer surfaces of permanent magnets are fixed
pole pieces, and magnets are placed between the pads of
a nonmagnetic material (Das, 2008).
The outer surface of the magnetic system with non-
magnetic spacers between the magnets and pole pieces
placed on permanent magnets shaped like a cylinder and
as a working channel for the treated liquid is the annular
gap crossing between the magnet system and the pipeline
casing. Figure 3 shows a diagram of the installation of a
magnetic device in the well.
Magnetic device is a body of ferromagnetic pipe. A
sleeve joint for tubing is fixed at one end of the pipe. On the
inner surface of the casing permanent magnets are fixed.
The device is installed in the tubing string below the
bottom-hole pump or in the necessary part of the tubing
string. As the mining fluid flows through the casing, it is
treated by magnetic field.
Figure 3. ARPD control technology in the producing wells
equipped with sucker-rod pumping unit: 1 – deep
pump; 2 – magnetic device; 3 – tubing string;
4 – column casing; 5 – column rod (steel); 6 – cen-
trators-protectors; 7 – polished rod; 8 – insulating
insert; 9 – balance; 10 – drive unit; 11 – fiberglass
rod; 12 – station of cathodic protection (power
supply); 13 – cable (flexible); 14 – cable
Some characteristics of the magnetic device:
– the diameter of the device, mm – 73;
– lifetime, years, not less than 30;
– performance – explosion-protected;
– working pressure, MPa – up to 15;
– weight of the magnetic device, kg – not more than 10;
– operating temperature range of production fluid –
10 – 120°C;
– production fluid composition which guarantees the
efficiency of the magnetic device – watering at least
25%, mineralization at least 150 g/kg (Nalivaiko, Man-
gura, Mangura, & Nalivaiko, 2015).
The use of the magnetic device doubled the average
turnaround time of wells complicated by the formation of
emulsions and ARPD. Chemical treatment of the wells
was stopped.
At Boryslav OGCR, the use of the magnetic device
allowed to increase the turnaround period of wells by
2.2 times and to decrease the number of thermal and
chemical treatments, respectively, by 2 and 5 times.
The use of the magnetic device in wells complicated
by ARPD allowed to increase their average turnaround
time by 2 times and to terminate chemical treatments of
wells. Magnetic treatment is aimed to increase turna-
round period of wells by directional magnetic field effect
(Nalivaiko, Mangura, Mangura, & Nalivaiko, 2015).
The use of magnetic treatment can be effective, both
in the case of well flowing, and its operation by the depth-
M. Kharchenko, A. Manhura, S. Manhura, I. Lartseva. (2017). Mining of Mineral Deposits, 11(2), 28-33
32
rod, centrifugal and diaphragm pumps as well as on oil
pipelines to increase their anti-corrosion resistance.
The payoff period for magnetic devices used to pre-
vent the ARPD formation depending on the turnaround
period and geological characteristics of a particular well
ranges from one to three months (Wang & Wang, 2014).
3. CONCLUSIONS
The article aimed to describe magnetic treatment of
production fluid as a method of ARPD control. The
magnetic device runs into the well and this ensures the
effectiveness of magnetic treatment of the whole vol-
ume of the liquid that passes through the device in the
same conditions of high-gradient field with sufficient
duration of treatment.
Magnetic treatment differs from other methods of flu-
id treatment in that this operation does not require any
power supply to the unit, because it is based on perma-
nent magnets.
Magnetic Anti-Paraffin Device can work in large di-
ameter pipelines, thus providing the necessary magnetic
field and magnetic induction. Therefore, in our opinion,
it should be used in the wells with high content of
ARPD deposits.
ACKNOWLEDGEMENTS
The present study would have been impossible with-
out support from Poltava National Technical Yuri Kon-
dratyuk University administration. We express our sin-
cere gratitude for the opportunity to conduct tests in
modern Laboratory of Oil and Gas Technologies.
REFERENCES
Chow, R., Sawatzky, R., Henry, D., Babchin, A., Wang, Y.,
Cherney, L., & Humphreys, R. (2000). Precipitation of
Wax from Crude Oil Under the Influence of a Magnetic
Field. Journal of Canadian Petroleum Technology, 39(06).
https://doi.org/10.2118/00-06-05
Das, S.K. (2008). Electro Magnetic Heating in Viscous Oil
Reservoir. In International Thermal Operations and Heavy
Oil Symposium (pp. 11). Calgary: Society of Petroleum
Engineers.
https://doi.org/10.2118/117693-ms
Gavriluk, O.V., & Glazkov, O.V. (2001). The Application of
Magnetic Liquide Treatment in Oil Fields of West Siberia.
In 11th European Symposium on Improved Oil Recovery.
European Association of Geoscientists & Engineers.
https://doi.org/10.3997/2214-4609.201405977
Ivakhnenko, O.P. (2006) Magnetic Analysis of Petroleum Res-
ervoir Fluids, Matrix Mineral Assemblages and Fluid-Rock
Interactions. Ph.D. Institute of Petroleum Engineering.
Klassen, V.I. (1982). Omagnichevanie vodnykh sistem. Mos-
kva: Khimiya.
Nalivaiko, O., Mangura, A., Mangura, S., & Nalivaiko, L.
(2015). Peculiarities of Magnetic Anti-Paraffin Device
(MAD) Modeling in COMSOL Multiphysics Software.
Problems of Energy Saving and Nature Use, 58-67.
Pisareva, S.I., Kamenchuk, Y.A., Andreeva, L.N., & Unger, F.G.
(2005). The Nature of Formation and Dissolution of As-
phalt-Resin-Wax Deposits. Chemistry and Technology of
Fuels and Oils, 41(6), 480-485.
https://doi.org/10.1007/s10553-006-0013-3
Suzuki, H., Kodera, S., Matsunaga, H., & Kurobe, T. (1993).
Study on Magnetic Field-Assisted Polishing (2nd Report) –
Effect of Magnetic Field Distribution on Removal Distribu-
tion. Journal of the Japan Society for Precision Engineer-
ing, 59(11), 1833-1838.
https://doi.org/10.1016/0141-6359(94)90185-6
Tung, N.P., Van Vuong, N., Long, B.Q.K., Vinh, N.Q.,
Hung, P.V., Hue, V.T., & Hoe, L.D. (2001). Studying the
Mechanism of Magnetic Field Influence on Paraffin Crude
Oil Viscosity and Wax Deposition Reductions. In SPE Asia
Pacific Oil and Gas Conference and Exhibition (pp. 7).
Jakarta: Society of Petroleum Engineers.
https://doi.org/10.2118/68749-ms
Wang, L.J., & Wang, W. (2014). Paraffin Depositing Mecha-
nism and Prediction Methods of Paraffin Removal Cycle.
Applied Mechanics and Materials, (675-677), 1512-1516.
https://doi.org/10.4028/www.scientific.net/amm.675-677.1512
Zhang, W.W., Wang, T.T., Li, X., & Zhang, S.C. (2013).
The Effect of Magnetic Field on the Deposition of Paraf-
fin Wax on the Oil Pipe. Advanced Materials Research,
(788), 719-722.
https://doi.org/10.4028/www.scientific.net/amr.788.719
Zhang, W.W., Wang, D.D., Wang, T.T., & Zhang, S.C. (2015).
Study on the Mechanism of Magnetic Paraffin Control
of Crude Oil Based on the Reorientation of Paraffin Crys-
tals Induced by Magnetic Field. Applied Mechanics and
Materials, (743), 137-141.
https://doi.org/10.4028/www.scientific.net/amm.743.137
ABSTRACT (IN UKRAINIAN)
Мета. Обґрунтувати використання магнітного поля для запобігання асфальтосмолистопарафінових відкла-
день на нафтогазовому обладнанні, а також розглянути сучасні погляди на стан проблеми асфальтосмолистопа-
рафінових відкладень на нафтопромисловому обладнанні та можливі методи її вирішення за допомогою магні-
тної обробки.
Методика. Аналіз та узагальнення результатів комплексу досліджень магнітної обробки свердловинної
продукції за допомогою використання програми COMSOL Multiphysics.
Результати. Запропоновано технологію використання магнітного поля для запобігання асфальтосмолисто-
парафінових відкладень. Отримані результати використання магнітної обробки свердловинної продукції дають
можливість використовувати її у нафтопромисловій практиці як у свердловинах, які обладнанні штанговими
свердловинними насосними установками, так і при експлуатації свердловин фонтанним способом або свердло-
вин, що експлуатуються електровідцентровими насосами, а також на нафтопроводах.
Наукова новизна. Використання високоенергетичних магнітів на основі рідкоземельних матеріалів, дозво-
ляє зменшити асфальтосмолистопарафінові відклади на нафтовому обладнанні.
M. Kharchenko, A. Manhura, S. Manhura, I. Lartseva. (2017). Mining of Mineral Deposits, 11(2), 28-33
33
Практична значимість. Запропонована магнітна обробка свердловинної продукції створює важливі перед-
умови експлуатації родовищ, які знаходяться на пізніх стадії розробки та характеризуються великим вмістом
асфальтенів, смол та парафінів. Результати проведення магнітної обробки свердловинної продукції довели ефе-
ктивність використання даної обробки, що призвело до збільшення міжремонтного періоду у два рази.
Ключові слова: магнітна обробка, магнітне поле, нафта, асфальтосмолистопарафінові відкладення,
свердловина
ABSTRACT (IN RUSSIAN)
Цель. Обосновать использование магнитного поля для предотвращения асфальтосмолистопарафиновых от-
ложений на нефтегазовом оборудовании, а также рассмотреть современные взгляды на состояние проблемы
асфальтосмолистопарафинових отложений на нефтепромысловом оборудовании и возможные методы ее реше-
ния с помощью магнитной обработки.
Методика. Анализ и обобщение результатов комплекса исследований магнитной обработки скважинной
продукции с помощью использования программы COMSOL Multiphysics.
Результаты. Предложена технология использования магнитного поля для предотвращения асфальтосмоли-
стопарафиновых отложений. Полученные результаты использования магнитной обработки скважинной про-
дукции, дают возможность использовать ее в нефтепромысловой практике как в скважинах, оборудованных
штанговыми скважинными насосными установками, так и при эксплуатации скважин фонтанным способом или
скважин, эксплуатируемых электроценторобежными насосами, а также на нефтепроводах.
Научная новизна. Использование высокоэнергетических магнитов на основе редкоземельных материалов
позволяет уменьшить асфальтосмолистопарафиновые отложения на нефтяном оборудовании.
Практическая значимость. Предложенная магнитная обработка скважинной продукции создает важные
предпосылки эксплуатации месторождений, которые находятся на поздней стадии разработки и характеризу-
ются большим содержанием асфальтенов, смол и парафинов. Результаты проведения магнитной обработки
скважинной продукции доказали эффективность использования данной обработки, что привело к увеличению
межремонтного периода в два раза.
Ключевые слова: магнитная обработка, магнитное поле, нефть, асфальтосмолистопарафиновые
отложения, скважина
ARTICLE INFO
Received: 2 February 2017
Accepted: 11 May 2017
Available online: 30 June 2017
ABOUT AUTHORS
Maksym Kharchenko, Candidate of Technical Sciences, Associate Professor of the Department of Oil and Gas Exploi-
tation and Geotechnics, Poltava National Technical Yuri Kondratyuk University, 24 Pershotravnevyi Ave., l/110,
36011, Poltava, Ukraine. E-mail: maksym.kharchenko@alma.pl.ua
Andrii Manhura, Senior Instructor of the Department of Oil and Gas Exploitation and Geotechnics, Poltava National
Technical Yuri Kondratyuk University, 24 Pershotravnevyi Ave., l/110, 36011, Poltava, Ukraine. E-mail:
mangura2000@mail.ru
Svitlana Manhura, Senior Instructor of the Department of Oil and Gas Exploitation and Geotechnics, Poltava National
Technical Yuri Kondratyuk University, 24 Pershotravnevyi Ave., l/110, 36011, Poltava, Ukraine. E-mail:
svet-mangura@mail.ru
Iryna Lartseva, Candidate of Technical Sciences, Associate Professor of the Department of Oil and Gas Exploitation
and Geotechnics, Poltava National Technical Yuri Kondratyuk University, 24 Pershotravnevyi Ave., l/110, 36011,
Poltava, Ukraine. E-mail: larchik.84@mail.ru
|