The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model

The interaction between the two Maxwell flows of general form in a gas of rough spheres is studied. The approximate solution of the Bryan–Pidduck equation describing the interaction is a bimodal distribution with specially selected coefficient functions. It is shown that under certain additional con...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Hukalov, O.O., Gordevskyy, V.D.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/145858
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Interaction of the Maxwell Flows of General Form for the Bryan{Pidduck Model / O.O. Hukalov, V.D. Gordevskyy // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 1. — С. 54-66. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-145858
record_format dspace
spelling irk-123456789-1458582019-02-02T01:23:02Z The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model Hukalov, O.O. Gordevskyy, V.D. The interaction between the two Maxwell flows of general form in a gas of rough spheres is studied. The approximate solution of the Bryan–Pidduck equation describing the interaction is a bimodal distribution with specially selected coefficient functions. It is shown that under certain additional conditions imposed on these functions and hydrodynamic parameters of the flows, the norm of the difference between the parts of the Bryan–Pidduck equation can be arbitrarily small. Вивчається взаємодiя мiж двома максвеллiвськими потоками загального вигляду в газi iз шорсткуватих сфер. Наближений розв’язок рiвняння Брайана–Пiддака, яке описує цю взаємодiю, № бiмодальним розподiлом зi спецiально пiдiбраними коефiцiєнтними функцiями. Показано, що за певних додаткових умов, накладених на цi функцiї i на гiдродинамiчнi параметри потокiв, норма рiзницi мiж частинами рiвняння Брайана–Пiддака може бути якою завгодно малою. This work was partially supported by the NAS of Ukraine Project "Linear evolution equations in a Hilbert space and the Boltzmann equation". 2018 Article The Interaction of the Maxwell Flows of General Form for the Bryan{Pidduck Model / O.O. Hukalov, V.D. Gordevskyy // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 1. — С. 54-66. — Бібліогр.: 12 назв. — англ. 1812-9471 DOI: https://doi.org/10.15407/mag14.01.054 Mathematics Subject Classification 2010: 76P05, 45K05, 82C40, 35Q55 http://dspace.nbuv.gov.ua/handle/123456789/145858 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The interaction between the two Maxwell flows of general form in a gas of rough spheres is studied. The approximate solution of the Bryan–Pidduck equation describing the interaction is a bimodal distribution with specially selected coefficient functions. It is shown that under certain additional conditions imposed on these functions and hydrodynamic parameters of the flows, the norm of the difference between the parts of the Bryan–Pidduck equation can be arbitrarily small.
format Article
author Hukalov, O.O.
Gordevskyy, V.D.
spellingShingle Hukalov, O.O.
Gordevskyy, V.D.
The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model
Журнал математической физики, анализа, геометрии
author_facet Hukalov, O.O.
Gordevskyy, V.D.
author_sort Hukalov, O.O.
title The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model
title_short The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model
title_full The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model
title_fullStr The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model
title_full_unstemmed The Interaction of the Maxwell Flows of General Form for the Bryan-Pidduck Model
title_sort interaction of the maxwell flows of general form for the bryan-pidduck model
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/145858
citation_txt The Interaction of the Maxwell Flows of General Form for the Bryan{Pidduck Model / O.O. Hukalov, V.D. Gordevskyy // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 1. — С. 54-66. — Бібліогр.: 12 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT hukalovoo theinteractionofthemaxwellflowsofgeneralformforthebryanpidduckmodel
AT gordevskyyvd theinteractionofthemaxwellflowsofgeneralformforthebryanpidduckmodel
AT hukalovoo interactionofthemaxwellflowsofgeneralformforthebryanpidduckmodel
AT gordevskyyvd interactionofthemaxwellflowsofgeneralformforthebryanpidduckmodel
first_indexed 2025-07-10T22:41:38Z
last_indexed 2025-07-10T22:41:38Z
_version_ 1837301556599324672
fulltext Journal of Mathematical Physics, Analysis, Geometry 2018, Vol. 14, No. 1, pp. 54–66 doi: https://doi.org/10.15407/mag14.01.054 The Interaction of the Maxwell Flows of General Form for the Bryan–Pidduck Model O.O. Hukalov and V.D. Gordevskyy The interaction between the two Maxwell flows of general form in a gas of rough spheres is studied. The approximate solution of the Bryan–Pidduck equation describing the interaction is a bimodal distribution with specially selected coefficient functions. It is shown that under certain additional condi- tions imposed on these functions and hydrodynamic parameters of the flows, the norm of the difference between the parts of the Bryan–Pidduck equation can be arbitrarily small. Key words: rough spheres, Bryan–Pidduck equation, error, Maxwellian flows, bimodal distribution, hydrodynamic parameters. Mathematical Subject Classification 2010: 76P05, 45K05, 82C40, 35Q55. 1. Statement of the problem This article describes a model of rough spheres [4] first introduced by Bryan in 1894. The methods developed by Chapman and Enskog for general non-rotating spherical molecules were extended to Bryan’s model by Pidduck in 1922. The advantage of the model over all other variably rotating models is that no variables specifying its orientation in the space are required. The statement that the molecules are perfectly elastic and perfectly rough is to be interpreted as follows. When two molecules collide, the points which come into contact will not, in general, possess the same velocity. It is supposed that the two spheres grip each other without slipping; first each sphere is strained by the other, and then the strain energy is reconverted into kinetic energy of translation and rotation, no energy being lost; the effect is that the relative velocity of the spheres at their point of contact is reversed by the impact. The model is applied to monatomic molecules and taking into account its ability to rotate, is considered to be more physical than the model of hard spheres and thus more interesting to explore. The Boltzmann equation for the model of rough spheres (or the Bryan– Pidduck equation) has the form [3,4, 6, 7]: D(f) = Q(f, f); (1) c© O.O. Hukalov and V.D. Gordevskyy, 2018 https://doi.org/10.15407/mag14.01.054 The Interaction of the Maxwell Flows . . . for the Bryan–Pidduck Model 55 D(f) ≡ ∂f ∂t + ( V, ∂f ∂x ) ; (2) Q(f, f) ≡ d2 2 ∫ R3 dV1 ∫ R3 dω1 ∫ Σ dαB(V − V1, α) [ f(t, V ∗1 , x, ω ∗ 1)f(t, V ∗, x, ω∗) − f(t, V, x, ω)f(t, V1, x, ω1) ] . (3) Here d is the diameter of the molecule, which is associated with the moment of inertia I by the relation I = bd2 4 , (4) where b, b ∈ ( 0, 2 3 ] , is the parameter characterizing the isotropic distribution of matter inside the gas particles; t is the time; x = (x1, x2, x3) ∈ R3 is the spatial coordinate; V = (V 1, V 2, V 3) and w = (w1, w2, w3) ∈ R3 are the linear and angular velocities of the molecule, respectively; ∂f∂x is the gradient of the function f of the variable x; Σ is the unit sphere in the space R3; α is the unit vector of R3 directed along the line connecting the centers of the colliding molecules; B (V − V1, α) = |(V − V1, α)| − (V − V1, α) (5) is the collision term. The linear (V ∗, V ∗1 ) and angular (w∗, w∗1) molecular velocities after the colli- sion can be expressed by the appropriate values before the collision: V ∗ = V − 1 b+ 1 ( b(V1 − V )− bd 2 α× (ω + ω1) + α(α, V1 − V ) ) , V ∗1 = V1 + 1 b+ 1 ( b(V1 − V )− bd 2 α× (ω + ω1) + α(α, V1 − V ) ) , ω∗ = ω + 2 d(b+ 1) { α× (V − V1) + d 2 [α(ω + ω1, α)− ω − ω1] } , ω∗1 = ω1 + 2 d(b+ 1) { α× (V − V1) + d 2 [α(ω + ω1, α)− ω − ω1] } , where the symbol × indicates the vector product. These formulas can be obtained using the laws of conservation of momentum, the total energy of translational and rotational motion (for the first time they were given in [1]). As is known, the general form of the Maxwellian solution of the Boltzmann equation for the model of hard spheres was obtained in [5,8,11], and its description and study can also be found in [2,9,12]. A similar problem for the Bryan–Pidduck model was finally solved in [9]. In [9], it is shown that the most general form of local Maxwellians, which is feasible for the Bryan–Pidduck model, has the form Mi = ρiI 3/2 ( βi π )3 e −βi ( (V−V i) 2 +Iω2 ) , (6) 56 O.O. Hukalov and V.D. Gordevskyy where ρi is the gas density (here and throughout what follows, the index i takes values 1 and 2) which has the following analytical representation: ρi = ρ0ie βi(ω2 i r 2 i−2wix), (7) ρ0i is the positive constant, βi = 1 2Ti is the value inverse to the temperature Ti, ωi is the angular velocity of the gas flow; r2 i denotes the scalar expression r2 i = 1 ω2 i [ωi × (x− x0i − u0it)] 2 ; (8) the mass velocity of molecules V i has the form V i = V̂i + wit+ [ωi × (x− x0i − u0it)] , (9) the vector u0i⊥ωi, the axis of speed x0i and the density x0i at the moment of time t = 0 have the form x0i = 1 ω2 i [ ωi × Ṽi ] , x0i = 1 ω2 i [ ωi × ( Ṽi − u0i )] , (10) Ṽi are the arbitrary constant vectors of the space R3, but arbitrary vectors V̂i, wi are parallel to the angular velocity ωi. We consider the problem of constructing the approximate solution of the Bryan–Pidduck equations (1)–(3) in the form of a bimodal distribution f = ϕ1M1 + ϕ2M2, (11) where Maxwellians Mi are described by (6), and the desired coefficient func- tions ϕi(t, x) are chosen to be such that the deviation between the parts of equa- tion (1) is arbitrarily small due to the conditions imposed on the hydrodynamic parameters included in distribution (6). In this work, as a deflection between the parts of equation (1), we use the uniform-integral error from [10]: ∆ = sup (t,x)∈R4 ∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| . (12) 2. The main results Theorem 2.1. Let the coefficient functions ϕi(t, x) in distribution (11) have the form ϕi(t, x) = ψi(t, x)e−βi(ω 2 i r 2 i−2wix), (13) where ψi(t, x) are smooth, nonnegative and bounded on R4 functions. Assume that the expressions tψi, (x, u0i)ψi, ∂ψi ∂t , ∣∣∣∣∂ψi∂x ∣∣∣∣ , ∣∣∣∣∂ψi∂x ∣∣∣∣ t, ( x, ∂ψi ∂x ) (14) The Interaction of the Maxwell Flows . . . for the Bryan–Pidduck Model 57 are also bounded. In addition, consider the representations: ωi = ω0i βni , wi = w0i βki , n, k > 1. (15) Then there exists a value ∆′ such that ∆ 6 ∆′, and we have the equality lim βi→+∞ ∆′ = 2∑ i=1 ρ0i sup (t,x)∈R4 ∣∣∣∣∂ψi∂t + ( ∂ψi ∂x , V̂i + Ṽi − 1 ω2 0i ω0i ( ω0i, Ṽi ))∣∣∣∣ + 4πd2ρ01ρ02 ( sup (t,x)∈R4 (ψ1ψ2) )∣∣∣∣V̂1 − V̂2 + Ṽ1 − Ṽ2 − 1 ω2 01 ω01 ( ω01, Ṽ1 ) + 1 ω2 02 ω02 ( ω02, Ṽ2 )∣∣∣∣ . (16) Proof. Substitute bimodal distribution (11) to the differential operator D(f): D(f) = M1D(ϕ1) +M2D(ϕ2) = M1 ( ∂ϕ1 ∂t + V ∂ϕ1 ∂x ) +M2 ( ∂ϕ2 ∂t + V ∂ϕ2 ∂x ) . After elementary transformations, the collision integral takes the form Q(f, f) = ϕ1ϕ2 [Q (M1,M2) +Q (M2,M1)] . Further we will use the well-known decomposition of the collision integral Q(f, g) = G(f, g)− fL(g), (17) where the gain and the loss terms of the collision integral have the form (see [2,4]): G(f, g) = d2 2 ∫ R3 dV1 ∫ R3 dω1 ∫ ∑ dαB(V − V1, α)f(t, x, V ∗1 , ω ∗ 1)g(t, x, V ∗, ω∗), and L(g) = d2 2 ∫ R3 dV1 ∫ R3 dω1 ∫ ∑ dαB(V − V1, α)g(t, x, V1, ω1). As it was shown in [10],∫ R3 dV ∫ R3 dωQ(Mi,Mj) = 0, j = 1, 2. By the above equality and (17), we get the equality∫ R3 dV ∫ R3 dωG(Mi,Mj) = ∫ R3 dV ∫ R3 dωMiL(Mj). (18) Then it is possible to obtain the inequality |D(f)−Q(f, f)| 6M1 (|D(ϕ1)|+ ϕ1ϕ2L(M2)) +M2 (|D(ϕ2)|+ ϕ1ϕ2L(M1)) 58 O.O. Hukalov and V.D. Gordevskyy + ϕ1ϕ2 (G(M1,M2) +G(M2,M1)) . After integrating the last inequality over the space of linear and angular ve- locities and taking into account (18), we get the estimation∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| 6 2∑ i,j=1 i 6=j ∫ R3 dV ∫ R3 dω (|D(ϕi)|+ ϕiϕjL(Mj))Mi + 2ϕ1ϕ2 ∫ R3 dV ∫ R3 dωG(M1,M2) 6 2∑ i=1 ∫ R3 dV ∫ R3 dω|D(ϕi)|Mi + 4ϕ1ϕ2 ∫ R3 dV ∫ R3 dωG(M1,M2). From [7], we use the relation∫ R3 dV ∫ R3 dωG(M1,M2) = d2ρ1ρ2 π2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V 1 − V 2 ∣∣∣∣ (19) to continue the estimation by using (19) and the form of Maxwellians (6):∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| 6 2∑ i=1 ∫ R3 dV ∫ R3 dω ∣∣∣∣∂ϕi∂t + ( V, ∂ϕi ∂x )∣∣∣∣ ρiI3/2 ( βi π )3 e −βi ( (V−V i) 2 +Iω2 ) + 4d2ρ1ρ2 π2 ϕ1ϕ2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V 1 − V 2 ∣∣∣∣ . Calculating the integral of the angular velocity ∫ R3 dωe −βiIω2 = ( π βiI )3/2 , we will have∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| 6 2∑ i=1 ρi ( βi π )3/2 ∫ R3 dV ∣∣∣∣∂ϕi∂t + ( V, ∂ϕi ∂x )∣∣∣∣ e−βi(V−V i) 2 + 4d2ρ1ρ2 π2 ϕ1ϕ2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V 1 − V 2 ∣∣∣∣ . Next, let us change the variables in the integral under the sum V = p√ βi + V i, whose Jacobian is J = 1 β 3/2 i , to get the estimation∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| The Interaction of the Maxwell Flows . . . for the Bryan–Pidduck Model 59 6 1 π3/2 2∑ i=1 ρi ∫ R3 ∣∣∣∣∂ϕi∂t + ( p√ βi + V i, ∂ϕi ∂x )∣∣∣∣ e−p2dp + 4d2ρ1ρ2 π2 ϕ1ϕ2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V 1 − V 2 ∣∣∣∣ . (20) Then we have to find the derivatives of the functions ϕi(t, x) by the variable t basing on its representation (13): ∂ϕi ∂t = e−βi(ω 2 i r 2 i−2wix) ( ∂ψi ∂t + 2βiψi [ ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )]) . Thus the gradient over the spatial coordinate x has the form ∂ϕi ∂x = e−βi(ω 2 i r 2 i−2wix) ( ∂ψi ∂x + 2βiψi [ wi + ωi ( ωi, x)− ω2 i (x− x0i − u0it )]) . Continue to evaluate (20) by using the derivatives of the coefficient func- tions ϕi(t, x) and the expression for the density (7):∫ R3 dV ∫ R3 ω |D(f)−Q(f, f)| 6 1 π3/2 2∑ i=1 ρ0ie βi(ω2 i r 2 i−2wix) ∫ R3 dpe−p 2 ∣∣∣∣e−βi(ω2 i r 2 i−2wix) { ∂ψi ∂t + 2βiψi [ ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )]} + ( p√ βi + V i, e −βi(ω2 i r 2 i−2wix) { ∂ψi ∂x + 2βiψi [ wi + ωi(ωi, x)− ω2 i (x− x0i − u0it) ]})∣∣∣∣ + 4d2ρ01ρ02ψ1ψ2 π2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V 1 − V 2 ∣∣∣∣ . After elementary transformations and substitution of the expression for mass velocity, V i (9), into the above estimation, we have∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| ≤ 1√ π3 2∑ i=1 ρ0i ∫ R3 dpe−p 2 ∣∣∣∣∂ψi∂t + 2βiψi ( ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )) + ( p√ βi + V̂i + wit+ [ωi × (x− x0i − u0it)] , ∂ψi ∂x + 2βiψi [ wi + ωi(ωi, x)− ω2 i (x− x0i − u0it) ])∣∣∣∣ + 4d2ρ01ρ02ψ1ψ2 π2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V̂1 − V̂2 + (w1 − w2)t 60 O.O. Hukalov and V.D. Gordevskyy + [ω1 × (x− x01 − u01t)]− [ ω2 × (x− x02 − u02t) ]∣∣∣∣ . (21) Let us regroup the terms in the right-hand side of the last inequality in the following way:∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| 6 1√ π3 2∑ i=1 ρ0i ∫ R3 dpe−p 2 ∣∣∣∣∂ψi∂t + ( ∂ψi ∂x , p√ βi + V̂i + wit+ [ωi × (x− x0i − u0it)] ) + 2βiψi ( ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )) + 2ψi √ βi(p, ωi)(ωi, x) + 2βiψi ( p√ βi + V̂i + wit+ [ωi × (x− x0i − u0it)] , wi − ω2 i (x− x0i − u0it) )∣∣∣∣ + 4d2ρ01ρ02ψ1ψ2 π2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V̂1 − V̂2 + (w1 − w2)t + [ω1 × (x− x01 − u01t)]− [ω2 × (x− x02 − u02t)] ∣∣∣∣ . As we know from vector algebra, for arbitrary three vectors a, b, c, the equality[ a× [ b× c ]] = b(a, c)− c(a, b) is true. Then, taking into account (10), we arrive at [ωi × x0i] = 1 ω2 i ωi(ωi, Ṽi)− Ṽi, (22) and due to some elementary transformations, we have( p√ βi + V̂i + wit+ [ωi × (x− x0i − u0it)] , wi − ω2 i (x− x0i − u0it) ) = ω2 i ( x− u0it, Ṽi − u0i ) − 1 ω2 i (wi, ωi)(ωi, Ṽi) + ( p√ βi + V̂i + Ṽi + wit, wi − ω2 i (x− u0it) + [ ωi × ( Ṽi − u0i )] + (wi, [ωi × (x− u0it)]) ) . Thus, we have the following estimation:∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| 6 1√ π3 2∑ i=1 ρ0i ∫ R3 dpe−p 2 ∣∣∣∣∂ψi∂t + ( ∂ψi ∂x , p√ βi + V̂i + Ṽi + wit+ [ωi × (x− u0it)]− 1 ω2 i ωi(ωi, Ṽi) ) The Interaction of the Maxwell Flows . . . for the Bryan–Pidduck Model 61 + 2βiψi ( ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )) + 2ψi √ βi(p, ωi)(ωi, x) + 2βiψi { ω2 i ( x− u0it, Ṽi − u0i ) − 1 ω2 i (wi, ωi)(ωi, Ṽi) + ( p√ βi + V̂i + Ṽi + wit, wi − ω2 i (x− u0it) + [ ωi × ( Ṽi − u0i )] + (wi, [ωi × (x− u0it)]) )}∣∣∣ + 4d2ρ01ρ02ψ1ψ2 π2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V̂1 − V̂2 + Ṽ1 − Ṽ2 + (w1 − w2)t [ω1 × (x− u01t)]− [ω2 × (x− u02t)] + 1 ω2 2 ω2(ω2, Ṽ2)− 1 ω2 1 ω1(ω1, Ṽ1) ∣∣∣∣ . In the last inequality, let us turn to the supremum of both parts, the existence of which follows from conditions (14) of Theorem 2.1: ∆ = sup (t,x)∈R4 ∫ R3 dV ∫ R3 ω |D(f)−Q(f, f)| 6 1√ π3 2∑ i=1 ρ0i ∫ R3 dpe−p 2 sup (t,x)∈R4 ∣∣∣∣∂ψi∂t + ( ∂ψi ∂x , p√ βi + V̂i + Ṽi + wit+ [ωi × (x− u0it)]− 1 ω2 i ωi(ωi, Ṽi) ) + 2βiψi ( ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )) + 2ψi √ βi(p, ωi)(ωi, x) + 2βiψi { ω2 i ( x− u0it, Ṽi − u0i ) − 1 ω2 i (wi, ωi)(ωi, Ṽi) + ( p√ βi + V̂i + Ṽi + wit, wi − ω2 i (x− u0it) + [ ωi × ( Ṽi − u0i )] + (wi, [ωi × (x− u0it)]) )}∣∣∣ + 4d2ρ01ρ02 π2 sup (t,x)∈R4 ψ1ψ2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V̂1 − V̂2 + Ṽ1 − Ṽ2 + (w1 − w2)t + [ω1 × (x− u01t)]− [ω2 × (x− u02t)] + 1 ω2 2 ω2(ω2, Ṽ2)− 1 ω2 1 ω1(ω1, Ṽ1) ∣∣∣∣ , which implies the representation for the value of ∆′: ∆′ = 1√ π3 2∑ i=1 ρ0i ∫ R3 dpe−p 2 sup (t,x)∈R4 ∣∣∣∣∂ψi∂t + ( ∂ψi ∂x , p√ βi + V̂i + Ṽi + wit+ [ωi × (x− u0it)]− 1 ω2 i ωi(ωi, Ṽi) ) 62 O.O. Hukalov and V.D. Gordevskyy + 2βiψi ( ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )) + 2ψi √ βi(p, ωi)(ωi, x) + 2βiψi { ω2 i ( x− u0it, Ṽi − u0i ) − 1 ω2 i (wi, ωi)(ωi, Ṽi) + ( p√ βi + V̂i + Ṽi + wit, wi − ω2 i (x− u0it) + [ ωi × ( Ṽi − u0i )] + (wi, [ωi × (x− u0it)]) )}∣∣∣ + 4d2ρ01ρ02 π2 sup (t,x)∈R4 ψ1ψ2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V̂1 − V̂2 + Ṽ1 − Ṽ2 + (w1 − w2)t + [ω1 × (x− u01t)]− [ω2 × (x− u02t)] + 1 ω2 2 ω2(ω2, Ṽ2)− 1 ω2 1 ω1(ω1, Ṽ1) ∣∣∣∣ . Using condition (15) of Theorem 2.1 and passing to the low-temperature limit, the validity of which follows from the lemma proved in [7], we have lim βi→+∞ ∆′ = 1√ π3 2∑ i=1 ρ0i sup (t,x)∈R4 ∫ R3 dpe−p 2 ∣∣∣∣∂ψi∂t + ( ∂ψi ∂x , V̂i + Ṽi − 1 ω2 0i ω0i ( ω0i, Ṽi ))∣∣∣∣ + 4d2ρ01ρ02 π2 sup (t,x)∈R4 (ψ1ψ2) ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣V̂1 − V̂2 + Ṽ1 − Ṽ2 − 1 ω2 01 ω01 ( ω01, Ṽ1 ) + 1 ω2 02 ω02 ( ω02, Ṽ2 )∣∣∣∣ . Calculating the integrals in the right-hand side of the last equality, we get that assertion (16) of Theorem 2.1 holds. Corollary 2.2. Let all the conditions of Theorem 2.1 be valid and the func- tions ψi be of the form ψi(t, x) = Ci ( x− t ( V̂i + Ṽi − 1 ω2 0i ω0i ( ω0i, Ṽi ))) , (23) where Ci are nonnegative, smooth and bounded functions on R4. In addition, one of the conditions: d→ 0 (24) or V̂1 + Ṽ1 − 1 ω2 01 ω01 ( ω01, Ṽ1 ) = V̂2 + Ṽ2 − 1 ω2 02 ω02 ( ω02, Ṽ2 ) (25) is required to be fulfilled. Then we have the statement: ∀ε > 0 ∃β0 ∀βi > β0 ∆ < ε. (26) The Interaction of the Maxwell Flows . . . for the Bryan–Pidduck Model 63 The validity of this corollary obviously follows from the inequality ∆ 6 ∆′. If we substitute the functions ψi of the form (23) into (16), then its first term vanishes. If we use any of additional conditions (24) or (25), then the last term of (16) also vanishes. Corollary 2.3. As a function ψi, one can consider an arbitrary function of the form ψi(t, x) = Ci ([ x× ( V̂i + Ṽi − 1 ω2 0i ω0i ( ω0i, Ṽi ))]) , where Ci are also nonnegative, smooth and bounded functions on R4. If addition- ally one of the conditions (24) or (25) is satisfied, then (26) remains true. In this case, the functions ψi depend only on spatial coordinates and naturally the first sum on the right-hand side of (16) vanishes. If one of the conditions (24), (25) is satisfied, then (26) remains true. Theorem 2.4. Suppose that the coefficient functions ϕi(t, x) are of the form ϕi(t, x) = ψi(t, x)e−βiω 2 i r 2 i , (27) where the same conditions as in Theorem 2.1 are imposed on the functions ψi, but expressions (14) remain bounded even after multiplying them by the factor e−2βiwix. Then, if condition (15) is satisfied, the statement (16) of Theorem 2.1 is also valid. Proof. Estimation (20) remains true, so let us calculate the derivatives of the coefficient functions: ∂ϕi ∂t = e−βiω 2 i r 2 i ( ∂ψi ∂t + 2βiψi [ ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )]) , ∂ϕi ∂x = e−βiω 2 i r 2 i ( ∂ψi ∂x + 2βiψi [ ωi(ωi, x)− ω2 i (x− x0i − u0it) ]) . Next, substituting the functions ϕi(t, x) (27), the obtained derivatives, the density (7) and the mass velocity V i in the right-hand side of inequality (20), we have:∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| 6 1√ π3 2∑ i=1 ρ0ie −2βiwix ∫ R3 dpe−p 2 ∣∣∣∣∂ψi∂t + 2βiψi ( ω2 i (x, u0i)− u2 0iω 2 i t− ( ωi × Ṽi, u0i )) + ( ∂ψi ∂x + 2βiψi ( ωi(ωi, x)− ω2 i (x− x0i − u0it) ) , p√ βi + V̂i + wit+ [ωi × (x− x0i − u0it)] )∣∣∣∣ + 4d2ρ01ρ02ψ1ψ2 π2 e−2β1w1x−2β2w2x ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 64 O.O. Hukalov and V.D. Gordevskyy + V̂1 − V̂2 + (w1 − w2)t+ [ω1 × (x− x01 − u01t)]− [ω2 × (x− x02 − u02t)] ∣∣∣ . Thus, we have expression (21) with accuracy up to the factor e−2βiwix and the term wi. Further, in the same way as in the proof of Theorem 2.1, performing the same transformations, but imposing an additional condition of boundness on the functions (14) with the factor e−2βiwix, due to condition (15), we get convinced of the correctness of assertions (16), which proves Theorem 2.4. Theorem 2.5. Let the coefficient functions ϕi(t, x) be of the form ϕi(t, x) = ψi(t, x)e2βiwix, (28) where the same conditions as in Theorem 2.1, are imposed on the functions ψi, but expressions (14) remain bounded even after multiplying them by the factor eβiω 2 i r 2 i . Then, if condition (15) remains true, the statement (16) of Theorem 2.1 is also valid. Proof. Using again (20), calculate the derivatives of the coefficient func- tions (28): ∂ϕi ∂t = e2βiwix ∂ψi ∂t , ∂ϕi ∂x = e2βiwix ( ∂ψi ∂x + 2βiψiwi ) . Further, as in the proves of previous theorems, we substitute the expressions for ϕi of the form (28), the density (7) and the mass velocity V i into inequal- ity (20):∫ R3 dV ∫ R3 dω |D(f)−Q(f, f)| 6 1√ π2 2∑ i=1 ρ0ie βiω 2 i r 2 i ∫ R3 dpe−p 2 ∣∣∣∣∂ψi∂t + ( ∂ψi ∂x + 2βiψiwi, p√ βi + V̂i + wit+ [ωi × (x− x0i − u0it)] )∣∣∣∣ + 4d2ρ01ρ02ψ1ψ2 π2 eβ1ω 2 1r 2 1+β2ω2 2r 2 2 ∫ R3 dq ∫ R3 dq1e −q2−q21 ∣∣∣∣ q√ β1 − q1√ β2 + V̂1 − V̂2 + (w1 − w2)t+ [ω1 × (x− x01 − u01t)]− [ω2 × (x− x02 − u02t)] ∣∣∣ . The obtained expression is simpler than the estimation (21). Using the conditions of the theorem, we prove it in the same way as Theorem 2.1. So, in the paper, the bimodal distribution (11) with Maxwell modes Mi of the most general form is obtained for the model of rough spheres, which with arbitrary degree of accuracy minimizes the uniform-integral error (12) between the sides of the Bryan–Pidduck equation (1). From the physical point of view, the obtained solution can be interpreted as follows: with descending of temperatures of flows, their rotational movement slows down and simultaneously their linear acceleration is reduced. The Interaction of the Maxwell Flows . . . for the Bryan–Pidduck Model 65 Supports. This work was partially supported by the NAS of Ukraine Project “Linear evolution equations in a Hilbert space and the Boltzmann equation”. References [1] T. Carleman, Problems Mathematiques dans la Theorie Cinetique des Gas, Almqvist & Wiksells, Uppsala, 1957. [2] C. Cercignani, The Boltzman Equation and its Applications, Springer, New York, 1988. [3] C. Cercignani and M. Lampis, On the kinetic theory of a dense gas of rough spheres, J. Stat. Phys. 53 (1988), 655–672. [4] S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge Univ. Press, Cambridge, 1952. [5] O.G. Fridlender, Local Maxwellian solutions of the Boltzmann equation, Prikl. Mat. Mekh. 29 (1965), 973–977 (Russian). [6] V.D. Gordevskyy, Explicit approximate solutions of the Boltzmann equation for the model of rough spheres, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (2000), No. 4, 10–13 (Ukrainian). [7] V.D. Gordevskyy, Approximate billow solutions of the kinetic Bryan–Pidduck equa- tion, Math. Methods Appl. Sci. 23 (2000), 1121–1137. [8] V.D. Gordevskyy, On the non-stationary Maxwellians, Math. Methods Appl. Sci. 27 (2004), 231–247. [9] V.D. Gordevskyy and A.A. Gukalov, Maxwell distributions for the model of rough spheres, Ukran̈ın. Mat. Zh. 63 (2011), 629–639 (Russian). [10] V.D. Gordevskyy and A.A. Gukalov, Interaction of the eddy flows in the Bryan– Pidduck model, Visn. Kharkiv. Nats. Univ. Mat. Prikl. Mat. Mekh. (2011), No. 990, 27–41 (Russian). [11] H. Grad, On the kinetic theory of racefied gases, Comm. Pure Appl. Math. 2 (1949), 331–407. [12] M.N. Kogan, The Dynamics of a Rarefied Gas, Nauka, Moscow, 1967 (Russian). Received September 6, 2016, revised December 2, 2016. O.O. Hukalov, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine, E-mail: hukalov@ilt.kharkov.ua V.D. Gordevskyy, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine, E-mail: gordevskyy2006@gmail.com mailto:hukalov@ilt.kharkov.ua mailto:gordevskyy2006@gmail.com 66 O.O. Hukalov and V.D. Gordevskyy Взаємодiя максвеллiвських потокiв загального виду для моделi Брайана–Пiддака О.О. Гукалов, В.Д. Гордевський Вивчається взаємодiя мiж двома максвеллiвськими потоками загаль- ного вигляду в газi iз шорсткуватих сфер. Наближений розв’язок рiвнян- ня Брайана–Пiддака, яке описує цю взаємодiю, є бiмодальним розподi- лом зi спецiально пiдiбраними коефiцiєнтними функцiями. Показано, що за певних додаткових умов, накладених на цi функцiї i на гiдро- динамiчнi параметри потокiв, норма рiзницi мiж частинами рiвняння Брайана–Пiддака може бути якою завгодно малою. Ключовi слова: шорсткуватi сфери, рiвняння Брайана–Пiддака, вiд- хил, максвеллiвськi потоки, бiмодальний розподiл, гiдродинамiчнi пара- метри. Statement of the problem The main results