Foliations of codimension one and Milnor's conjecture

We prove that a fundamental group of leaves of a codimension one C²- foliation with nonnegative Ricci curvature on a closed Riemannian manifold is finitely generated and almost Abelian, i.e., it contains finitely generated Abelian subgroup of finite index. In particular, we confirm the Milnor conjec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Bolotov, D.V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/145863
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Foliations of codimension one and Milnor's conjecture / D.V. Bolotov // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 2. — С. 119-131. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We prove that a fundamental group of leaves of a codimension one C²- foliation with nonnegative Ricci curvature on a closed Riemannian manifold is finitely generated and almost Abelian, i.e., it contains finitely generated Abelian subgroup of finite index. In particular, we confirm the Milnor conjecture for manifolds which are leaves of a codimension one foliation with nonnegative Ricci curvature on a closed Riemannian manifold.