Non-Differentiable Functions Defined in Terms of Classical Representations of Real Numbers
The present paper is devoted to the functions from a certain subclass of non-differentiable functions. The arguments and values of the considered functions are represented by the s-adic representation or the nega-s-adic representation of real numbers. The technique of modeling these functions is the...
Gespeichert in:
Datum: | 2018 |
---|---|
1. Verfasser: | Serbenyuk, S.O. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2018
|
Schriftenreihe: | Журнал математической физики, анализа, геометрии |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/145868 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Non-Differentiable Functions Defined in Terms of Classical Representations of Real Numbers / S.O. Serbenyuk // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 2. — С. 197-213. — Бібліогр.: 38 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Non-Dierentiable Functions Dened in Terms of Classical Representations of Real Numbers
von: S. O. Serbenyuk
Veröffentlicht: (2018) -
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
von: Serbenyuk, S.O.
Veröffentlicht: (2017) -
Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers
von: S. O. Serbenyuk
Veröffentlicht: (2017) -
Continuous nowhere differentiable function with fractal properties defined in terms of the Q2-representation
von: M. V. Pratsovytyi, et al.
Veröffentlicht: (2020) -
Self-Affine Singular and Nowhere Monotone Functions Related to the Q-Representation of Real Numbers
von: M. V. Pratsovytyi, et al.
Veröffentlicht: (2013)