Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates

We study asymptotic expansion as ν→0 for integrals over ℝ²d={(x,y)} of quotients of the form F(x,y)cos(λx∙y)/((x∙y)²+ν²), where λ≥0 and F decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence.

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
1. Verfasser: Kuksin, S.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/145883
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates / S. Kuksin // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 4. — С. 510-518. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We study asymptotic expansion as ν→0 for integrals over ℝ²d={(x,y)} of quotients of the form F(x,y)cos(λx∙y)/((x∙y)²+ν²), where λ≥0 and F decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence.