Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates

We study asymptotic expansion as ν→0 for integrals over ℝ²d={(x,y)} of quotients of the form F(x,y)cos(λx∙y)/((x∙y)²+ν²), where λ≥0 and F decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence.

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Kuksin, S.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/145883
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates / S. Kuksin // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 4. — С. 510-518. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-145883
record_format dspace
spelling irk-123456789-1458832019-02-03T01:23:14Z Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates Kuksin, S. We study asymptotic expansion as ν→0 for integrals over ℝ²d={(x,y)} of quotients of the form F(x,y)cos(λx∙y)/((x∙y)²+ν²), where λ≥0 and F decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence. Ми вивчаємо асимптотичне поводження при ν→0 iнтегралiв в ℝ²d = {(x,y)} вiд виразiв вигляду F(x,y)cos(λx∙y)/((x∙y)²+ν²), де λ≥0 i F досить швидко спадає на нескiнченностi. Подiбнi iнтеграли виникають в теорi ї хвильової турбулентностi. 2018 Article Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates / S. Kuksin // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 4. — С. 510-518. — Бібліогр.: 3 назв. — англ. 1812-9471 DOI: https://doi.org/10.15407/mag14.04.510 Mathematics Subject Classification 2000: 34E05, 34E10 http://dspace.nbuv.gov.ua/handle/123456789/145883 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study asymptotic expansion as ν→0 for integrals over ℝ²d={(x,y)} of quotients of the form F(x,y)cos(λx∙y)/((x∙y)²+ν²), where λ≥0 and F decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence.
format Article
author Kuksin, S.
spellingShingle Kuksin, S.
Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates
Журнал математической физики, анализа, геометрии
author_facet Kuksin, S.
author_sort Kuksin, S.
title Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates
title_short Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates
title_full Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates
title_fullStr Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates
title_full_unstemmed Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates
title_sort asymptotic properties of integrals of quotients when the numerator oscillates and the denominator degenerates
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/145883
citation_txt Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates / S. Kuksin // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 4. — С. 510-518. — Бібліогр.: 3 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT kuksins asymptoticpropertiesofintegralsofquotientswhenthenumeratoroscillatesandthedenominatordegenerates
first_indexed 2025-07-10T22:48:03Z
last_indexed 2025-07-10T22:48:03Z
_version_ 1837301959894237184
fulltext Journal of Mathematical Physics, Analysis, Geometry 2018, Vol. 14, No. 4, pp. 510–518 doi: https://doi.org/10.15407/mag14.04.510 Asymptotic Properties of Integrals of Quotients when the Numerator Oscillates and the Denominator Degenerates Sergei Kuksin Dedicated to V.A. Marchenko on the occasion of his 95th birthday We study asymptotic expansion as ν → 0 for integrals over R2d = {(x, y)} of quotients of the form F (x, y) cos(λx · y) /( (x · y)2 + ν2 ) , where λ ≥ 0 and F decays at infinity sufficiently fast. Integrals of this kind appear in the theory of wave turbulence. Key words: asymptotic of integrals, oscillating integrals, four-waves in- teraction. Mathematical Subject Classification 2010: 34E05, 34E10. 1. Introduction In the paper [2] we study asymptotic behaviour of integrals Iν = ∫ Rd×Rd dx dy F (x, y) (x · y)2 + (νΓ(x, y))2 , d ≥ 2, 0 < ν ≤ 1, as ν → 0, where F and Γ are C2-functions, Γ is positive and the two satisfy certain conditions at infinity. In particular, if Γ ≡ 1, then |∂αz F (z)| ≤ C ′ 〈z〉−N−|α| , z = (x, y) ∈ R2d, |α| ≤ 2, (1.1) where C ′ > 0 and N > 2d− 2. Denote by Σ ⊂ R2d = Rdx × Rdy (1.2) the quadric {(x, y) : x ·y = 0}, and by Σ∗ its regular part Σ\{(0, 0)}. It is proved in [2] (see [1] for related results) that Iν = πν−1 ∫ Σ∗ F (z) |z|Γ(z) dΣ∗z +O(χd(ν)), (1.3) where χd(ν) = { 1, d ≥ 3, max ( ln(ν−1), 1 ) , d = 2, c© Sergei Kuksin, 2018 https://doi.org/10.15407/mag14.04.510 Asymptotic Properties of Integrals of Quotients. . . 511 dΣ∗ is the volume element on Σ∗, induced from the standard Riemann structure in R2d, and the integral in (1.3) converges absolutely. Integrals of this form appear in the study of the four-waves interaction. The wave turbulence (WT) limit in systems with the four-waves interaction leads to oscillating versions of the integrals above with constant functions Γ. Re-denoting νΓ back to ν we write the integrals in question as Jν = ∫ R2d dz F (z) cos(λx · y) (x · y)2 + ν2 , d ≥ 2, λ ≥ 0, 0 < ν ≤ 1 (1.4) (as before, z = (x, y)). We assume that F is a C2-function, satisfying (1.1). The aim of this work is to prove the following result, describing the asymptotic behaviour of Jν when ν → 0, uniformly in λ ≥ 0: Theorem 1.1. Let 0 < ν ≤ 1 and λ ≥ 0. Then the integral Jν and the integral J0 = πe−νλ ∫ Σ∗ F (z)|z|−1 dΣ∗z converge absolutely and ∣∣Jν − ν−1J0 ∣∣ ≤ Cχd(ν), (1.5) where C depends on d and the constants C ′, N in (1.1), but not on ν and λ. Note that since C does not depend on λ, then relation (1.5) remains valid for integrals (1.4), where λ = λ(ν) is any function of ν. Concerning the imposed restriction d ≥ 2 see item iv) in Section 5. If λ = 0, the integral Jν becomes a special case of Iν (with Γ = 1), and (1.5) follows from (1.3). Since sin2(λ2x · y) = 1 2(1 − cos(λx · y)), then combining (1.3) and (1.5) we get Corollary 1.2. As ν → 0,∫ Rd×Rd dx dy F (x, y) sin2(λ2x · y) (x · y)2 + ν2 = π 2 ν−1(1− e−νλ) ∫ Σ∗ F (z) |z| dΣ∗z +O(χd(ν)), (1.6) uniformly in λ ≥ 0. Classically the WT considers singular versions of the integral in the l.h.s. of (1.6): ∫ dx dy F (x, y) sin2(λ2x · y) (x · y)2 . (1.7) The theory deals with these integrals by performing certain formal calculations, see Section 6 of [3] (e.g., note there equations (6.39)–(6.41)). Assertion (1.6) may be regarded as a regularisation of the integral (1.7). The factor |z|−1 which it introduces in the limiting density is not present in the asymptotic description of integrals (1.7), used in the works on WT. Theorem 1.1 is proved below in Sections 2–4, using the geometric approach of the paper [2], which also applies to various modifications of integrals Iν and Jν . Some of these applications are discussed in the last Section 5. 512 Sergei Kuksin Notation. As usual, we denote 〈z〉 = √ |z|2 + 1. For an integral I = ∫ R2d f(z) dz and a submanifold M ⊂ R2d, dimM = m ≤ 2d, compact or not (if m = 2d, then M is an open domain in R2d) we write 〈I,M〉 = ∫ M f(z) dM (z), where dM (z) is the volume-element on M , induced from R2d. Similar 〈|I|,M〉 stands for the integral ∫ M |f(z)| dM (z). 2. Geometry of the quadric {x · y = 0} and its vicinity 2.1. The geometry of the quadric. The difficulty in studying the in- tegral Jν with small ν comes from the vicinity of the quadric Σ = {x · y = 0}. To examine the integral’s behaviour there we first analyse the geometry of the vicinity of the regular part of the quadric Σ∗ = Σ \ {(0, 0)}, following [2]. Exam- ple 5.1 at the end of the paper provides an elementary illustration to the objects, involved in this analysis. The set Σ∗ is a smooth submanifold of R2d of dimension 2d − 1. We denote by ξ a local coordinate on Σ∗ with the coordinate mapping ξ 7→ (xξ, yξ) = zξ ∈ Σ∗, denote |ξ| = |(xξ, yξ)| and denote N(ξ) = (yξ, xξ). The latter is the normal to Σ∗ at ξ of length |ξ|. For any 0 ≤ R1 < R2 we set SR1 = {z ∈ R2d : |z| = R1}, ΣR1 = Σ ∩ SR1 , SR2 R1 = {z : R1 < |z| < R2}, ΣR2 R1 = Σ ∩ SR2 R1 , and for t > 0 denote by Dt the dilation operator Dt : R2d → R2d, z 7→ tz. For z = (x, y) we write ω(z) = x · y. The following result is Lemma 3.1 from [2]: Lemma 2.1. 1) There exists θ0 ∈ (0, 1] such that a suitable neighbourhood Σnbh = Σnbh(θ0) of Σ∗ in R2d \ {0}, is invariant with respect to the dilations Dt, t > 0, and may be uniquely parametrized as Σnbh = {π(ξ, θ) : ξ ∈ Σ∗, |θ| < θ0}, where π(ξ, θ) = (xξ, yξ)+θNξ = (xξ, yξ)+θ(yξ, xξ). In particular, |π(ξ, θ)|2 = |ξ|2(1 + θ2). 2) If π(ξ, θ) ∈ Σnbh, then ω ( π(ξ, θ) ) = |ξ|2θ. (2.1) Asymptotic Properties of Integrals of Quotients. . . 513 3) If (x, y) ∈ SR \ Σnbh, then |x · y| ≥ cR2 for some c = c(θ0) > 0. For 0 ≤ R1 < R2 we will denote (Σnbh)R2 R1 = π(ΣR2 R1 × ( − θ0, θ0) ) . Now we discuss the Riemann geometry of the domain Σnbh = Σnbh(θ0), follow- ing [2]. The set Σ is a cone with the vertex in the origin, and Σ∗ = {tz : t > 0, z ∈ Σ1}. The set Σ1 is a closed manifold of dimension 2d − 2. Let us cover it by a finite system of charts N1, . . . ,Nñ, Nj = {ηj = (ηj1, . . . , η j 2d−2)}, and for any chart Nj denote by m(dηj) the volume element on Σ1, induced from R2d. Below we write points in any chart Nj as η, and the volume element — as m(dη). The mapping Σ1 × R+ → Σ∗, ((xη, yη), t)→ Dt(xη, yη) is a diffeomorphism. Accordingly, we can cover Σ∗ by the ñ charts Nj ×R+ with the coordinates (ηj , t) =: (η, t). The coordinates (η, t, θ), where η ∈ Nj , t > 0 and |θ| < θ0, 1 ≤ j ≤ ñ, make coordinate systems on Σnbh = Σnbh(θ0). In the coordinates (η, t) the volume element on Σ∗ is dΣ∗ = t2d−2m (dη) dt. (2.2) In the coordinates (η, t, θ) the volume elements in R2d reeds dx dy = t2d−1µ(η, θ)m (dη) dt dθ, where µ(η, 0) = 1 (2.3) (see [2]), a dilation map Dr, r > 0, reeds Dr(η, t, θ) = (η, rt, θ), and by (2.1) ω(η, t, θ) = t2θ. (2.4) Finally, since at a point z = π(ξ, θ) ∈ Σnbh we have ∂ ∂θ = ∇z · (yξ, xξ), then in view of (1.1) for any (η, t, θ) and any k ≤ 2,∣∣∣∣ ∂k∂θkF (η, t, θ) ∣∣∣∣ ≤ C 〈t〉−N , N > 2d− 4. (2.5) 2.2. The volume element dΣ∗ and the measure |z|−1dΣ∗. Theorem 1.1 and the result of [2] (see (1.3)) show that the manifold Σ∗, equipped with the measure |z|−1dΣ∗ , is crucial to study asymptotic of integrals Iν , Jν and their similarities (cf. Section 6 of [2] and Section 5 below). The coordinates (η, t) and the presentation (2.2) for the volume element are sufficient for the purposes of this work. But the quadric Σ is reach in structures and admits more instrumental coordinate systems. In particular, if d = 2, we can introduce in the space R2 x in (1.2) the polar coordinates (r, ϕ). Then for any fixed non-zero vector x = (r, ϕ) ∈ R2 x the set {y ∈ R2 y : (x, y) ∈ Σ∗} is the line in R2 y, perpendicular to x, and having the angle ϕ + π/2 with the horizontal axis. Parametrizing it by the 514 Sergei Kuksin length-coordinate l we get on Σ∗ the coordinates (r, l, ϕ) ∈ R+ × R × S1, S1 = R/2πZ, with the coordinate mapping Φ : (r, l, ϕ) 7→ ( x = (r cosϕ, r sinϕ), y = (−l sinϕ, l cosϕ) ) (this map is singular at r = 0). Since |∂Φ/∂r|2 = 1, |∂Φ/∂l|2 = 1, |∂Φ/∂ϕ|2 = r2 + l2, 〈∂Φ/∂r, ∂Φ/∂l〉 = 〈∂Φ/∂r, ∂Φ/∂ϕ〉 = 〈∂Φ/∂l, ∂Φ/∂ϕ〉 = 0, then in these coordinates the volume element on Σ∗ reeds as √ r2 + l2 dr dl dϕ, and the measure |z|−1dΣ∗ — as dr dl dϕ. Consider the fibre Π : R2 x × R2 y ⊃ Σ∗ → R2 x, (x, y) 7→ x. It has a singular fibre Π−10 = {0} × R2 y, and for any non-zero x the fibre Π−1x equals {x} × x⊥, where x⊥ is the line in R2 y, perpendicular to x. Since dx = r dr dϕ, then the given above presentation for the measure |z|−1dΣ∗ implies that its restriction to the regular part Σ+ ∗ of the fibred manifold Σ∗, Σ+ ∗ = Σ∗ \ ({0}× R2 y), disintegrates by the foliation Π as (|z|−1dΣ∗) |Σ+ ∗ = |x|−1 dx dx⊥y, x 6= 0, y ∈ x⊥, (2.6) where dx⊥ is the length on the euclidean line x⊥ ⊂ R2 y. We do not undertake the job of getting a right analogy of this result for the multidimensional case d > 2, but note that a straightforward modification of the construction above leads to the observation that for any d ≥ 2 the measure |z|−1dΣ∗ , restricted to Σ+ ∗ , disintegrates as pd(x, y) dx dx⊥y, x ∈ Rd \ {0}, y ∈ x⊥, (2.7) where x⊥ is the orthogonal complement to x in Rdy, , dx⊥ is the volume element on this Euclidean space, and the function pd satisfies the estimate pd ≤ C(|x| + |y|)d−2|x|1−d. 3. Integral over the vicinity of Σ To study the behaviour of the integral over a neighbourhood of Σ we first prove that the integral, evaluated over the vicinity of the singular point (0, 0) is small, and next study the integral over the vicinity of the regular part Σ∗ of the quadric. For 0 < δ ≤ 1 denote Kδ = {z = (x, y) : |x| ≤ δ, |y| ≤ δ} ⊂ Rd × Rd. An upper bound for the integral over Kδ follows from Lemma 2.1 of [2]: | 〈|Jν |,Kδ〉 | ≤ ∫ Kδ |F (z)| dz (x · y)2 + ν2 ≤ Cν−1δ2d−2. (3.1) Asymptotic Properties of Integrals of Quotients. . . 515 Now we estimate the integral over the neighbourhood Σnbh of Σ∗. For this end, using (2.3), for 0 ≤ A < B ≤ ∞ we disintegrate 〈 Jν , (Σ nbh)BA 〉 as 〈 Jν , (Σ nbh)BA 〉 = ∫ Σ1 m(dη) ∫ B A dt t2d−1 ∫ θ0 −θ0 dθ F (η, t, θ)µ(η, θ) cos(λx · y) t4θ2 + ν2 = ∫ Σ1 m(dη) ∫ B A dt t2d−1Υν(η, t), (3.2) where Υν(η, t) = t−4 ∫ θ0 −θ0 F (η, t, θ)µ(η, θ) cos(λt2θ) dθ θ2 + ε2 , ε = νt−2. To study Υν we first consider the integral Υ0 ν , obtained from Υν by freezing Fµ at θ = 0. Since µ(η, 0) = 1, then Υ0 ν = 2t−4F (η, t, 0) ∫ θ0 0 cos(λt2θ) dθ θ2 + ε2 = 2ν−1t−2F (η, t, 0) ∫ θ0/ε 0 cos(νλw) dw w2 + 1 . Consider the integral 2 ∫ θ0/ε 0 cos(νλw) dw w2 + 1 = 2 ∫ ∞ 0 cos(νλw) dw w2 + 1 − 2 ∫ ∞ θ0/ε cos(νλw) dw w2 + 1 =: I1 − I2. Since 2 ∫ ∞ 0 cos(ξw) dw w2 + 1 = ∫ ∞ −∞ eiξw dw w2 + 1 = πe−|ξ|, then I1 = πe−νλ. For I2 we have an obvious bound |I2| ≤ 2ε/θ0 = C1νt −2. So Υ0 ν(η, t) = πν−1t−2F (η, t, 0)(e−νλ + ∆t), |∆t| ≤ Cνt−2. (3.3) Now we estimate the difference between Υν and Υ0 ν . Writing (Fµ)(η, t, θ) − (Fµ)(η, t, 0) as A(η, t)θ + B(η, t, θ)θ2, where |A|, |B| ≤ C 〈t〉−N in view of (2.5), we have Υν −Υ0 ν = t−4 ∫ θ0 −θ0 (Aθ +Bθ2) cos(λt2θ) dθ θ2 + ε2 . Since the first integrand is odd in θ, then its integral vanishes, and |Υν −Υ0 ν | ≤ C 〈t〉 −N t−4 ∫ θ0 −θ0 θ2 dθ θ2 + ε2 ≤ 2C 〈t〉−N t−4θ0. So by (3.3)∣∣∣Υν(η, t)− πν−1t−2F (η, t, 0)e−νλ ∣∣∣ ≤ C 〈t〉−N ( t−4 + ν−1t−2 νt−2 ) ≤ C ′ 〈t〉−N t−4. (3.4) 516 Sergei Kuksin 4. End of the proof of Theorem 1.1 1) In view of (3.2), (3.4) and since N > 2d− 2, for δ ∈ (0, 1] we have∣∣∣∣〈Jν ,(Σnbh )∞ δ 〉 − πν−1e−νλ ∫ Σ1 mdη ∫ ∞ δ dt t2d−3F (η, t, 0) ∣∣∣∣ ≤ C ∫ ∞ δ t2d−5 〈t〉−N dt ≤ C1χd(δ). 2) Since d ≥ 2 and N > 2d− 2, then by estimate (2.5) the integral∫ Σ1 mdη ∫ ∞ 0 dt t2d−3F (η, t, 0) converges absolutely, and by (2.2) it equals∫ Σ1 mdη ∫ ∞ 0 dt t2d−3F (η, t, 0) = ∫ Σ∗ |z|−1F (z) dΣ∗z. 3) Applying 1) and 2) to F replaced by F0 = C ′〈z〉−N and using that |F | ≤ |F0| by (1.1) we find that the integral 〈 Jν , ( Σnbh )∞ δ 〉 also converges absolutely. 4) As |π(ξ, θ)| ≤ √ 2 |ξ|, then (Σnbh)δ0 ⊂ S √ 2δ 0 ⊂ K√2δ. Therefore by (3.1) ∣∣∣∣〈Jν ,(Σnbh )δ 0 〉 − πν−1e−νλ ∫ Σ1 mdη ∫ δ 0 dt t2d−3F (η, t, 0) ∣∣∣∣ ≤ 〈 |Jν |,K√2δ 〉 + πν−1e−νλ ∫ Σ1 mdη ∫ δ 0 dt t2d−3|F (η, t, 0)| ≤ C1ν −1δ2d−2 + C2ν −1δ2, for any 0 < δ ≤ 1. Choosing δ = √ ν, from here and 1)–3) we find that∣∣∣∣〈Jν ,Σnbh 〉 − πν−1e−νλ ∫ Σ1 mdη ∫ ∞ 0 dt t2d−3F (η, t, 0) ∣∣∣∣ ≤ Cχd(ν), and that the integral 〈 Jν ,Σ nbh 〉 converges absolutely. 5) Finally, let us estimate the integral over R2d \ Σnbh:〈 |Jν |,R2d \ Σnbh 〉 ≤ ∫ {|z|≤ √ ν} |F | dz ω2 + ν2 + Cd ∫ ∞ √ ν dr r2d−1 ∫ Sr\Σnbh |F (z)| dSr ω2 + ν2 . By item 3) of Lemma 2.1, |ω| ≥ Cr2 in Sr \ Σnbh. Jointly with (3.1) this implies that 〈 |Jν |,R2d \ Σnbh 〉 ∣∣ ≤ C + C ∫ ∞ √ ν r2d−1r−4 〈r〉−N dr ≤ C1χd(ν). Asymptotic Properties of Integrals of Quotients. . . 517 So the integral Jν converges absolutely and, in view of 2) and 4),∣∣∣∣Jν − πν−1e−νλ ∫ Σ1 mdη ∫ ∞ 0 dt t2d−3F (η, t, 0) ∣∣∣∣ = ∣∣∣∣Jν − πν−1e−νλ ∫ Σ∗ |z|−1F (z) dΣ∗z ∣∣∣∣ ≤ Cχd(ν). (4.1) This proves Theorem 1.1. 5. Comments i) The only part of the proof, where we use that N > 2d − 2 is Step 2) in Section 4: there this relation is evoked to establish the absolute convergence of the integral J0; everywhere else it suffices to assume that N > 2d − 4. Accordingly, if F satisfies (1.1) with N > 2d − 4 and 〈|F |,Σ∞1 〉 < ∞, then (1.5) holds, since 〈|F |,Σ1 0〉 <∞, see Step 4) Section 4. ii) Our approach does not apply to study integrals (1.4), where the divisor (x · y)2 + ν2 is replaced by (x · y)2 + (νΓ(x, y))2 and Γ 6= Const. But it applies to integrals Jsν = ∫ R2d dz F (z) sin(λx · y) (x · y)2 + ν2 , under certain restrictions on λ. E.g., if 1 ≤ λ ≤ ν−1 and d ≥ 3, then Jsν = O(1) as ν → 0, and the leading term again is given by an integral over Σ∗. The case d = 2 is a bit more complicated. iii)The approach allows to study integrals (1.4), where the quadratic form z 7→ x · y is replaced by any non-degenerate indefinite quadratic form of z ∈ RM , M ≥ 4. iv)The restriction M ≥ 4 in iii) (and d ≥ 2 in the main text, where dim z = 2d) was imposed since near the origin the disparity (4.1) is controlled by the integral ∫ 0 t M−5 dt, which strongly diverges if M < 4. The difficulty disappears if F vanishes near zero. This may be illustrated by the following easy example: Example 5.1. Consider J ′ν = ∫ R2 F (x, y) cos(λxy) x2y2 + ν2 dxdy, where F ∈ C2 0 (R2) vanishes near the origin. Now 2d = 2, the quadric Σ′ = {xy = 0} is one dimensional, has a singularity at the origin and its smooth part Σ′∗ = Σ′ \ 0 has four connected components. Consider one of them: C1 = {(x, y) : y = 0, x > 0}. Now the coordinate ξ is a point in R+ with (xξ, yξ) = (ξ, 0) and with the normal N(ξ) = (0, ξ), the set Σ1 ∩ C1 is the single point (1, 0) and the coordinate (η, t, θ) in the vicinity of C1 degenerates to (t, θ), t > 0, |θ| < θ0, with the coordinate-map (t, θ) 7→ (t, tθ). The relations (2.2) and (2.3) are now 518 Sergei Kuksin obvious, and the integral (3.1) vanishes if δ > 0 is sufficiently small. Interpreting z = (x, y) as a complex number, we write the assertion of Theorem 1.1 as ∣∣J ′ν − πν−1e−νλ ∫ Σ′ F (z) |z| dz ∣∣ ≤ C, where the integral is a contour integral in the complex plane. Supports. We acknowledge the support from the Centre National de la Recherche Scientifique (France) through the grant PRC CNRS/RFBR 2017-2019 No 1556, and from the Russian Science Foundation through the project 18-11- 00032. References [1] S.Yu. Dobrokhotov, V.E. Nazaikinskii, and A.V. Tsvetkova, On an approach to the computation of the asymptotics of integrals of rapidly varying functions, Mat. Zametki 103 (2018), 680–692 (Russian); Engl. transl.: Math. Notes 103 (2018), 713–723. [2] S. Kuksin, Asymptotic expansions for some integrals of quotients with degenerated divisors, Russ. J. Math. Phys. 24 (2017), 476–487. [3] S. Nazarenko, Wave Turbulence, Lecture Notes in Physics, 825, Springer, Heidel- berg, 2011. Received February 1, 2018. Sergei Kuksin, Institut de Mathémathiques de Jussieu–Paris Rive Gauche, CNRS, Université Paris Diderot, UMR 7586, Sorbonne Paris Cité, F-75013, Paris, France; School of Mathematics, Shandong University, Shanda Nanlu, 27, 250100, PRC; Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia, E-mail: Sergei.Kuksin@imj-prg.fr Асимптотичнi властивостi iнтегралiв вiд часток, коли чисельник осцiлює, а знаменник вироджується Sergei Kuksin Ми вивчаємо асимптотичне поводження при ν → 0 iнтегралiв в R2d = {(x, y)} вiд виразiв вигляду F (x, y) cos(λx · y) /( (x · y)2 + ν2 ) , де λ ≥ 0 i F досить швидко спадає на нескiнченностi. Подiбнi iнтеграли виникають в теорiї хвильової турбулентностi. Ключовi слова: асимптотичнi iнтеграли, iнтеграли, що осцiлюють, чотирихвильовi взаємодiї. mailto:Sergei.Kuksin@imj-prg.fr Introduction Geometry of the quadric {xy=0} and its vicinity The geometry of the quadric. The volume element d * and the measure |z|-1d *. Integral over the vicinity of End of the proof of Theorem 1.1 Comments