The Discrete Self-Adjoint Dirac Systems of General Type: Explicit Solutions of Direct and Inverse Problems, Asymptotics of Verblunsky-Type Coefficients and the Stability of Solving of the Inverse Problem

We consider discrete self-adjoint Dirac systems determined by the potentials (sequences) {Ck} such that the matrices Ck are positive definite and j-unitary, where j is a diagonal m × m matrix which has m1 entries 1 and m2 entries –1 (m1 +m2 = m) on the main diagonal. We construct systems with the ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Roitberg, I., Sakhnovich, A.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2018
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/145885
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Discrete Self-Adjoint Dirac Systems of General Type: Explicit Solutions of Direct and Inverse Problems, Asymptotics of Verblunsky-Type Coefficients and the Stability of Solving of the Inverse Problem / I. Roitberg, A. Sakhnovich // Журнал математической физики, анализа, геометрии. — 2018. — Т. 14, № 4. — С. 532-548. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We consider discrete self-adjoint Dirac systems determined by the potentials (sequences) {Ck} such that the matrices Ck are positive definite and j-unitary, where j is a diagonal m × m matrix which has m1 entries 1 and m2 entries –1 (m1 +m2 = m) on the main diagonal. We construct systems with the rational Weyl functions and explicitly solve the inverse problem to recover systems from the contractive rational Weyl functions. Moreover, we study the stability of this procedure. The matrices Ck (in the potentials) are the so-called Halmos extensions of the Verblunsky-type coefficients ρk. We show that in the case of the contractive rational Weyl functions the coefficients ρk tend to zero and the matrices Ck tend to the identity matrix Im.