Invariant varieties of periodic points for the discrete Euler top
The behaviour of periodic points of discrete Euler top is studied. We derive invariant varieties of periodic points explicitly. When the top is axially symmetric they are specified by some particular values of the angular velocity along the axis of symmetry, different for each period.
Gespeichert in:
Datum: | 2006 |
---|---|
Hauptverfasser: | Saito, S., Saitoh, N. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2006
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146045 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Invariant varieties of periodic points for the discrete Euler top / S. Saito, N. Saitoh // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
An Invariant Form of the Euler-Lagrange Operator
von: Milewski, J.
Veröffentlicht: (2008) -
Invariant solutions of a system of Euler equations that satisfy the Rankine—Hugoniot conditions
von: Yuryk, I.I.
Veröffentlicht: (2018) -
On the classification of symmetry reductions and invariant solutions for the Euler–Lagrange–Born–Infeld equation
von: V. M. Fedorchuk, et al.
Veröffentlicht: (2019) -
On the classification of symmetry reductions and invariant solutions for the Euler–Lagrange–Born–Infeld equation
von: V. M. Fedorchuk, et al.
Veröffentlicht: (2019) -
Invariant solutions of a system of Euler equations that satisfy the Rankine—Hugoniot conditions
von: I. I. Yuryk
Veröffentlicht: (2018)