Einstein-Riemann gravity on deformed spaces
A differential calculus, differential geometry and the E-R Gravity theory are studied on noncommutative spaces. Noncommutativity is formulated in the star product formalism. The basis for the gravity theory is the infinitesimal algebra of diffeomorphisms. Considering the corresponding Hopf algebra w...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146064 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Einstein-Riemann gravity on deformed spaces / J. Wess // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146064 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1460642019-02-07T01:23:48Z Einstein-Riemann gravity on deformed spaces Wess, J. A differential calculus, differential geometry and the E-R Gravity theory are studied on noncommutative spaces. Noncommutativity is formulated in the star product formalism. The basis for the gravity theory is the infinitesimal algebra of diffeomorphisms. Considering the corresponding Hopf algebra we find that the deformed gravity is based on a deformation of the Hopf algebra. 2006 Article Einstein-Riemann gravity on deformed spaces / J. Wess // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 19 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 83C65; 81T75; 58B34 http://dspace.nbuv.gov.ua/handle/123456789/146064 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A differential calculus, differential geometry and the E-R Gravity theory are studied on noncommutative spaces. Noncommutativity is formulated in the star product formalism. The basis for the gravity theory is the infinitesimal algebra of diffeomorphisms. Considering the corresponding Hopf algebra we find that the deformed gravity is based on a deformation of the Hopf algebra. |
format |
Article |
author |
Wess, J. |
spellingShingle |
Wess, J. Einstein-Riemann gravity on deformed spaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Wess, J. |
author_sort |
Wess, J. |
title |
Einstein-Riemann gravity on deformed spaces |
title_short |
Einstein-Riemann gravity on deformed spaces |
title_full |
Einstein-Riemann gravity on deformed spaces |
title_fullStr |
Einstein-Riemann gravity on deformed spaces |
title_full_unstemmed |
Einstein-Riemann gravity on deformed spaces |
title_sort |
einstein-riemann gravity on deformed spaces |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146064 |
citation_txt |
Einstein-Riemann gravity on deformed spaces / J. Wess // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 19 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT wessj einsteinriemanngravityondeformedspaces |
first_indexed |
2025-07-10T23:04:57Z |
last_indexed |
2025-07-10T23:04:57Z |
_version_ |
1837303015461093376 |