Para-Grassmann variables and coherent states
The definitions of para-Grassmann variables and q-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a operator expressed as a function of the creation and an...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146066 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Para-Grassmann variables and coherent states / D.C. Cabra, E.F. Moreno, A. Tanasă // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146066 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1460662019-02-07T01:24:14Z Para-Grassmann variables and coherent states Cabra, D.C. Moreno, E.F. Tanasă, A. The definitions of para-Grassmann variables and q-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a operator expressed as a function of the creation and annihilation operators. 2006 Article Para-Grassmann variables and coherent states / D.C. Cabra, E.F. Moreno, A. Tanasă // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R30; 81R50; 17B37 http://dspace.nbuv.gov.ua/handle/123456789/146066 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The definitions of para-Grassmann variables and q-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a operator expressed as a function of the creation and annihilation operators. |
format |
Article |
author |
Cabra, D.C. Moreno, E.F. Tanasă, A. |
spellingShingle |
Cabra, D.C. Moreno, E.F. Tanasă, A. Para-Grassmann variables and coherent states Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Cabra, D.C. Moreno, E.F. Tanasă, A. |
author_sort |
Cabra, D.C. |
title |
Para-Grassmann variables and coherent states |
title_short |
Para-Grassmann variables and coherent states |
title_full |
Para-Grassmann variables and coherent states |
title_fullStr |
Para-Grassmann variables and coherent states |
title_full_unstemmed |
Para-Grassmann variables and coherent states |
title_sort |
para-grassmann variables and coherent states |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146066 |
citation_txt |
Para-Grassmann variables and coherent states / D.C. Cabra, E.F. Moreno, A. Tanasă // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 25 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT cabradc paragrassmannvariablesandcoherentstates AT morenoef paragrassmannvariablesandcoherentstates AT tanasaa paragrassmannvariablesandcoherentstates |
first_indexed |
2025-07-10T23:05:07Z |
last_indexed |
2025-07-10T23:05:07Z |
_version_ |
1837303044795006976 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications Vol. 2 (2006), Paper 087, 8 pages
Para-Grassmann Variables and Coherent States?
Daniel C. CABRA †1†2†3, Enrique F. MORENO †3†4 and Adrian TANASĂ †5
†1 Laboratoire de Physique Théorique, CNRS UMR 7085, Université L. Pasteur,
3 rue de l’Université, F-67084 Strasbourg Cedex, France
E-mail: cabra@lpt1.u-strasbg.fr
†2 Facultad de Ingineŕıa, Universidad Nacional de lomas de Zamora,
Cno. de Cintura y Juan XXIII, (1832) Lomas de Zamora, Argentina
†3 Departamento de F́ısica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata,
C. C. 67, 1900 La Plata, Argentina
†4 Department of Physics, West Virginia University,
Morgantown, West Virginia 26506-6315, USA
E-mail: Enrique.Moreno@mail.wvu.edu
†5 Laboratoire de Physique Théorique, Bât. 210, CNRS UMR 8627, Université Paris XI,
F-91405 Orsay Cedex, France
E-mail: adrian.tanasa@ens-lyon.org
Received September 29, 2006, in final form November 22, 2006; Published online December 07, 2006
Original article is available at http://www.emis.de/journals/SIGMA/2006/Paper087/
Abstract. The definitions of para-Grassmann variables and q-oscillator algebras are re-
called. Some new properties are given. We then introduce appropriate coherent states as
well as their dual states. This allows us to obtain a formula for the trace of a operator
expressed as a function of the creation and annihilation operators.
Key words: para-Grassmann variables; q-oscillator algebra; coherent states
2000 Mathematics Subject Classification: 81R30; 81R50; 17B37
1 Introduction
The study of different generalisations of Grassmann variables and their applications has at-
tracted a great deal of interest in the last decades (see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14] and references therein).
Our approach is motivated by the fact that generalised Grassmann variables provide a natural
framework for the description of particles obeying generalised statistics. We thus focus on the
q-oscillator algebra (introduced in [15, 16]) which is particularly appealing for our purpose for
two distinct reasons. First, the nilpotency property of the creation and annihilation operator is
in direct connection with the maximal occupation number of the studied particles. Second, for
the case of multi-particle states, the wave function acquires a nontrivial phase when two particles
are interchanged (one may recall that this phase is trivial in the case of bosons and is −1 in the
case of fermions). One can note also that in [17] the authors have discussed many-body states
and the algebra of creation and annihilation operators for particles obeying exclusion statistics.
?This paper is a contribution to the Proceedings of the O’Raifeartaigh Symposium on Non-Perturbative and
Symmetry Methods in Field Theory (June 22–24, 2006, Budapest, Hungary). The full collection is available at
http://www.emis.de/journals/SIGMA/LOR2006.html
mailto:cabra@lpt1.u-strasbg.fr
file:Enrique.Moreno@mail.wvu.edu
file:adrian.tanasa@ens-lyon.org
http://www.emis.de/journals/SIGMA/2006/Paper087/
http://www.emis.de/journals/SIGMA/LOR2006.html
2 D.C. Cabra, E.F. Moreno and A. Tanasă
This paper is structured as follows. We first review the definition and basic properties
of the para-Grassmann variables. We then re-examine the q-oscillator algebra and introduce
appropriate coherent states. New properties of the coherent states are given. Finally we find
a representation for the trace of any operator, as an integration over para-Grassmann variables.
We show that the trace can be represented as a para-Grassmann integral of the matrix element
of the respective operator on the coherent state. This result is the natural generalisation of the
usual formula for the trace of an operator in the case of bosons or fermions (see for example [18]).
In the last section, some perspectives are briefly outlined. Let us mention here that this work
presents some partial results of a future publication [19].
2 One-particle states
2.1 Para-Grassmann variables
Consider the non-commutative variables θ and θ̄:
θp+1 = 0, θ̄p+1 = 0, θθ̄ = q2θ̄θ, where q2 = e
2πi
p+1 (1)
with p some non-zero integer number. Note that in [3] these variables are referred to as classical
(p + 1)-variables. Moreover, the name “para-Grassmann” was used also for different other
definitions, see for example [1], where some different variables, in connection with para-statistics,
were defined. Finally let us mention that in [9, 10], q-deformed classical variables and different
techniques were introduced.
We will use here the conventions of [3] for the definitions of a differential and integral calculus
appropriate for these variables. Thus [3, 20]∫
dθ θn = δn
p
√
[p]!,
where
[X] =
q2X − 1
q2 − 1
(2)
for any given c-number or operator X and
[n]! = [1] · · · [n]
for any given number n. Of special importance is the q-deformed exponential
ex
q =
p∑
n=0
xn
[n]!
.
2.2 q-oscillator algebra
Consider the q-boson oscillator [15, 16]
aa† − qa†a = q−N , aa† − q−1a†a = qN , (3)
where q 6= −1 is a complex number. Note that we deal here with some generalisation of bosons
and not of fermions.
Following the conventions of [3] we define
[[X]] =
qX − q−X
q − q−1
,
Para-Grassmann Variables and Coherent States 3
for any c-number or operator X. If q is a unit phase,
[[X]] = [[X]]∗,
where by ∗ we understand complex conjugation. We have
a†a = [[N ]].
In particular, if q2 = e
2πi
p+1 we can write
N =
p + 1
π
arcsin
(
a†a sin
π
p + 1
)
.
Occupation number representation: Introducing a vacuum vector |0〉 (s.t. a|0〉 = 0) we define
|n〉 =
(a†)n√
[[n]]!
|0〉.
Using again the commutation relations (3) we get
N |n〉 = n|n〉, a|n〉 =
√
[[n]]|n − 1〉, a†|n〉 =
√
[[n + 1]]|n + 1〉.
Furthermore
[N, a] = −a, [N, a†] = a† (4)
and if q = e
2πi
p+1 it can be proved that the creation and annihilation operators are (p + 1)-
nilpotent, ap+1 = 0 = (a†)p+1 (see [2]). Moreover, using (4) we have that for any c-number λ
qλNa† = qλa†qλN , qλNa = q−λaqλN .
(see [3]).
If instead, we assume the nilpotency condition of creation and annihilation operators
ap+1 = 0 = (a†)p+1. (5)
without imposing any condition on q (here we require that the exponent p + 1 is the minimal
exponent of nilpotency, so ar 6= 0 and (a†)r 6= 0 if r ≤ p), we get
a(a†)i = (1 + q2 + · · · + (q2)i−1)q−N (a†)i−1 + qi(a†)ia.
If q2 6= 1 this becomes
a(a†)i =
1 − (q2)i
1 − q2
q−N (a†)i−1 + qi(a†)ia.
Taking now i = p + 1 one has
a(a†)p+1 =
1 − (q2)p+1
1 − q2
q−N (a†)p + qp+1(a†)p+1a.
Now, using (5) we derive that (q2)p+1 = 1.
From the discussion above we conclude that for the q-boson oscillator algebra (3) the condi-
tions: q2 is a primitive p + 1 root of unity and a and a† are (p + 1)-nilpotent, are equivalent.
Finally, let us mention here that the operators a and a† are hermitian conjugates and they
generate a unitary representation [21].
4 D.C. Cabra, E.F. Moreno and A. Tanasă
Consider now the change of variables
b = q
N
2 a, b̄ = a†q
N
2 .
In these new variables the relations (3) reads
bb̄ − q2b̄b = 1, bb̄ − b̄b = q2N , (6)
and thus
b̄b = [N ],
where [N ] was defined in (2).
We can also express the occupation number states in terms of b̄ and b as follows
|n〉 =
(b̄)n√
[n]!
|0〉, b|n〉 =
√
[n]|n − 1〉, b̄|n〉 =
√
[n + 1]|n + 1〉.
Furthermore
[N, b] = −b, [N, b̄] = b̄.
Unlike the operators a and a†, the operators b and b̄ are not hermitian conjugates (b† 6= b̄) so
in order to define the dual vectors we introduce the operators b† and b̄†, the hermitian conjugate
of b and b̄ respectively. One has (see also [8])
b† = b̄q−N , b̄† = q−Nb.
Thus, up to a phase, b̄ coincides with b† and b with b̄†. We then have
〈n| = 〈0| bn√
[n]!
, 〈n|b = 〈n + 1|
√
[n + 1], 〈n|b̄ = 〈n − 1|
√
[n].
Before going further let us mention that different q-deformed algebraic structures with similar
properties exist in the literature, like the para-Grassmann algebra (see [4, 5, 7]) or the quon-
algebra (see [23, 24] and references therein).
Commutation relations between para-Grassmannians and creation/annihilation operators.
We complete the set of commutation relations given in equations (1) and (6) with
θb = q2bθ, θb̄ = q−2b̄θ, θ̄ b̄ = q2b̄ θ̄, θ̄b = q−2bθ̄ (7)
(notice that instead of the set (7), in some papers [13] regular commutation relations are as-
sumed).
Thus, the structure we study further on consists of the nilpotent operators b and b̄ obeying
the q-boson algebra (6), and the para-Grassmann variables θ and θ̄ obeying the commutation
relations given in equations (1) and (7). We also set the value of q to q = e
πi
p+1 . Notice that,
because of the commutation relations (7), the vectors |n〉 do not commute with θ. Indeed, if we
impose θ|0〉 = |0〉θ it follows that θ|n〉 = q−2n|n〉θ.
Coherent states. To find a coherent state |θ〉 we write generically
|θ〉 =
p∑
n=0
cn|n〉.
Para-Grassmann Variables and Coherent States 5
Imposing now
b|θ〉 = θ|θ〉
we get
|θ〉 =
p∑
n=0
qn(n+1)√
[n]!
θn|n〉
which can be written as
|θ〉 = eb̄θ
q |0〉.
The action of b̄ over the state θ is given by
b̄|θ〉 = q−2
p∑
n=1
qn(n+1) [n]√
[n]!
θn−1|n〉.
Finally one has the scalar product
〈n|θ〉 =
q−n(n−1)√
[n]!
θn. (8)
In analogy with the definition of |θ〉 we define a dual state 〈θ̄| through the relation
〈θ̄|b̄ = 〈θ̄|θ̄.
We have
〈θ̄| =
p∑
n=0
qn(n−1)√
[n]!
θ̄n〈n|
or, expressed in terms of b,
〈θ̄| = 〈0|eθ̄b
q .
Finally, we can compute the scalar product:
〈θ̄|n〉 =
qn(n−1)√
[n]!
θ̄n. (9)
Let us stress that the scalar product (9) is not the complex conjugate of the scalar product (8).
First, the para-Grassmannians θ and θ̄ cannot be complex conjugated to each other (this is
incompatible with the commutation relations (1)) and second, [n] is not a real number.
Let us mention here that different definitions of coherent states have been proposed for
different algebraic structures in some of the references cited. Thus, the definition we give is
different by some phase (see equations (8) and (9)) of the one proposed in [3] (also for the
q-boson oscillator algebra). Another example is given by the definition of [12, 13]; here also the
analytical difference is given by some phase, but in [12, 13] the coherent states are defined for
a different algebraic structure.
The matrix elements of the identity operator can be written as
〈θ̄| Id |θ〉 = 〈θ̄|θ〉 =
p∑
n=0
1
[n]!
θ̄nθn.
6 D.C. Cabra, E.F. Moreno and A. Tanasă
We can compute explicitly the matrix element 〈θ̄|O|θ〉 for any operator O expressed as a function
of b and b̄. If in the case of bosons and fermions this matrix element has a compact form,
independent of the form of O (see for example [18]), this does not hold anymore for para-
Grassmannians.
Let us now look for a resolution of the identity
Id =
∫
dθ̄dθµ(θ̄, θ)|θ〉〈θ̄|, (10)
where µ(θ̄, θ) =
p∑
n=0
µnθ̄nθn is a weight factor to be determined (µn being some complex number
coefficient). Equation (10) is equivalent to
δmn = 〈n|m〉 = 〈n| Id |m〉 =
∫
dθ̄dθµ(θ̄, θ)〈n|θ〉〈θ̄|m〉 =
∫
dθ̄dθ µ(θ̄, θ)
θnθ̄m√
[n]![m]!
, (11)
where we have used expressions (8) and (9) for the scalar products 〈n|θ〉 and 〈θ̄|m〉. Notice that
the q-factors involved in these scalar products cancel each other, also since µ(θ̄, θ) only involves
powers of θ̄θ, it commutes with 〈n|.
Integrating (11) we get (see [3])
µn =
(−1)n
[n]!
qn(n−1)
so we finally obtain
µ(θ̄, θ) =
p∑
n=0
(−1)n
[n]!
qn(n−1)θ̄nθn =
p∑
n=0
(−1)n
[n]!
(
θ̄θ
)n = e−θ̄θ
q .
Hence, we have the following resolution of the identity
Id =
∫
dθ̄dθ e−θ̄θ
q |θ〉〈θ̄|
thus allowing us to check the definition of a coherent state (see for example [25]).
Trace of an operator. Let us consider an operator O expressed as a function of b and b̄. We
want to express its trace in the form
TrO =
∫
dθ̄dθρ(θ, θ̄)〈θ̄|O|θ〉 (12)
with ρ(θ, θ̄) some function to be determined. We propose the following ansatz (that we will
justify later)
ρ(θ, θ̄) =
p∑
n=0
ρnθnθ̄n. (13)
Equation (12) can be written as
TrO =
p∑
m,n=0
∫
dθ̄dθρ(θ, θ̄)〈θ̄|n〉〈n|O|m〉〈m|θ〉
=
p∑
m,n=0
〈n|O|m〉
∫
dθ̄dθρ(θ, θ̄)〈θ̄|n〉〈m|θ〉
Para-Grassmann Variables and Coherent States 7
so we have∫
dθ̄dθρ(θ, θ̄)〈θ̄|n〉〈m|θ〉 = δnm.
Since only terms with n = m are nonzero, the function ρ(θ, θ̄) can only have terms with the
same powers of θ and θ̄, in agreement with our ansatz (13). A straightforward computation
gives
ρn =
(−1)n
[n]!
q(n+1)(n+2)
so we get
TrO =
∫
dθ̄dθ
p∑
n=0
(−1)n
[n]!
q(n+1)(n+2)θnθ̄n〈θ̄|O|θ〉. (14)
(In the framework of the para-Grassmann algebra mentioned above, some related calculations
have been performed in [7].)
The importance of formula (14) comes from the fact that it is a direct generalisation of the
trace formula for boson and fermion coherent states (see for example [18]). Following the same
line of reasoning it is more useful to use this formula rather than the trace expressed in terms of
occupation states for the computation of some specific quantities (like for example the partition
function or the occupation number). Furthermore, this would represent a direct generalisation
of the calculations performed in the case of bosons or fermions.
3 Perspectives
In this paper we have studied para-Grassmann variables and the q-oscillator boson algebra. Ap-
propriate coherent states were defined and some new properties studied. Finally we obtained
a trace formula for any operator O expressed as a function of the creation and annihilation opera-
tors. This formula is expressed as an integral over para-Grassmann variables of the coherent-state
matrix elements of the operator O.
The next step in the direction of work we propose here is to generalise these results to multi-
particle states. Once one has the equivalent of the trace formula (14) for multi-particle states,
one can calculate several physical quantities, like the partition function and occupation number.
The results can then be compared with the behaviour of particles obeying generalised statistics.
We will report on these issues in a future paper [19].
Acknowledgments
A. Tanasă acknowledges M. Goze and R. Santachiara.
[1] Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, New York, Springer-Verlag, 1982.
[2] Polychronakos A.P., A classical realization of quantum algebras, Modern Phys. Lett. A, 1990, V.5, 2325–
2334.
[3] Baulieu L., Floratos E.G., Path integral on the quantum plane, Phys. Lett. B, 1991, V.258, 171–178.
[4] Filippov A.T., Isaev A.P., Kurdikov A.B., ParaGrassmann analysis and quantum groups, Modern Phys.
Lett. A, 1992, V.7, 2129–2142, gr-qc/9204089.
[5] Filippov A.T., Isaev A.P., Kurdikov A.B., ParaGrassmann differential calculus, Theor. Math. Phys., 1993,
V.94, 150–165, hep-th/9210075.
[6] Chaichian M., Demichev A.P., q-deformed path integral, Phys. Lett. B, 1994, V.320, 273–280,
hep-th/9310001.
http://arxiv.org/abs/gr-qc/9204089
http://arxiv.org/abs/hep-th/9210075
http://arxiv.org/abs/hep-th/9310001
8 D.C. Cabra, E.F. Moreno and A. Tanasă
[7] Isaev A.P., Paragrassmann integral, discrete systems and quantum groups, Internat. J. Modern Phys. A,
1997, V.12, 201–206, q-alg/9609030.
[8] Chaichian M., Demichev A.P., Path integrals with generalized Grassmann variables, q-alg/9504016.
[9] Ilinski K.N., Kalinin G.V., Stepanenko A.S., q-functional field theory for particles with exotic statistics,
Phys. Lett. A, 1997, V.232, 399–408, hep-th/9705086.
[10] Ilinski K.N., Kalinin G.V., Stepanenko A.S., q-functional Wick’s theorems for particles with exotic
statistics, J. Phys. A: Math. Gen., 1997, V.30, 5299–5310, hep-th/9704181.
[11] Rausch de Traubenberg M., Clifford algebras, supersymmetry and Z(n) symmetries: applications in field
theory, hep-th/9802141 (in French).
[12] Daoud M., Hassouni Y., Kibler M., Generalized supercoherent states, Phys. Atomic Nuclei, 1998, V.61,
1821–1864, quant-ph/9804046.
[13] Daoud M., Kibler M., A fractional supersymmetric oscillator and its coherent states, math-ph/9912024.
[14] Cugliandolo L.F., Lozano G.S., Moreno E.F., Schaposnik F.A., A note on Gaussian integrals over
paragrassmann variables, Internat. J. Modern Phys. A, 2004, V.19, 1705–1714, hep-th/0209172.
[15] Biedenharn L.C., The quatum group SU(2)-q and a q analog of the boson operators, J. Phys. A: Math.
Gen., 1989, V.22, 873–878.
[16] Macfarlane A.J., On q analogs of the quantum harmonic oscillator and the quatum group SU(2)-q,
J. Phys. A: Math. Gen., 1989, V.22, 4581–4588.
[17] Karabali D., Nair V.P., Many body states and operator algebra for exclusion statistics, Nuclear Phys. B,
1995, V.438, 551–560.
[18] Negele J.W., Orland H., Quantum many-particle systems, Cambridge, Perseus, 1988.
[19] Cabra D., Moreno E., Tanasă A., Para-Grassmann variables and coherent states for multi-particle states,
in progress.
[20] Rausch de Traubenberg M., Fleury N., Beyond spinors, in Leite Lopes Festschrift, Editors N. Fleury et al.,
Singapore, World Scientific, 1988, 79–101.
[21] Hayashi T., Q-analogues of Clifford and Weyl algebras – spinor and oscillator reoresentations of quantum
enveloping algebras, Comm. Math. Phys., 1990, V.127, 129–144.
[22] Chaichian M., Kulish P., Quantum Lie superalgebras and q oscillators, Phys. Lett. B, 1990, V.234, 72–80.
[23] Fivel D., Interpolation between Fermi and Bose statistics using generalized commutators, Phys. Rev. Lett.,
1990, V.65, 3361–3364.
[24] Greenberg O.W., Quon statistics, Phys. Rev. D, 1991, V.43, 4111–4120.
[25] Klauder J.R., Skagerstam B., Coherent states: applications in physics and mathematical physics, World
Scientific, 1985.
http://arxiv.org/abs/q-alg/9609030
http://arxiv.org/abs/q-alg/9504016
http://arxiv.org/abs/hep-th/9705086
http://arxiv.org/abs/hep-th/9704181
http://arxiv.org/abs/hep-th/9802141
http://arxiv.org/abs/quant-ph/9804046
http://arxiv.org/abs/math-ph/9912024
http://arxiv.org/abs/hep-th/0209172
1 Introduction
2 One-particle states
2.1 Para-Grassmann variables
2.2 q-oscillator algebra
3 Perspectives
|