Fermion on curved spaces, symmetries, and quantum anomalies
We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved background...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2006
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146084 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Fermion on curved spaces, symmetries, and quantum anomalies / M. Visinescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146084 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1460842019-02-08T01:23:12Z Fermion on curved spaces, symmetries, and quantum anomalies Visinescu, M. We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. Using the Atiyah-Patodi-Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly. 2006 Article Fermion on curved spaces, symmetries, and quantum anomalies / M. Visinescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 83C47; 83C40; 83C20 http://dspace.nbuv.gov.ua/handle/123456789/146084 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge-Lenz vector of the Kepler-type problem. Using the Atiyah-Patodi-Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly. |
format |
Article |
author |
Visinescu, M. |
spellingShingle |
Visinescu, M. Fermion on curved spaces, symmetries, and quantum anomalies Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Visinescu, M. |
author_sort |
Visinescu, M. |
title |
Fermion on curved spaces, symmetries, and quantum anomalies |
title_short |
Fermion on curved spaces, symmetries, and quantum anomalies |
title_full |
Fermion on curved spaces, symmetries, and quantum anomalies |
title_fullStr |
Fermion on curved spaces, symmetries, and quantum anomalies |
title_full_unstemmed |
Fermion on curved spaces, symmetries, and quantum anomalies |
title_sort |
fermion on curved spaces, symmetries, and quantum anomalies |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146084 |
citation_txt |
Fermion on curved spaces, symmetries, and quantum anomalies / M. Visinescu // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 41 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT visinescum fermiononcurvedspacessymmetriesandquantumanomalies |
first_indexed |
2025-07-10T23:07:23Z |
last_indexed |
2025-07-10T23:07:23Z |
_version_ |
1837303193215696896 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications Vol. 2 (2006), Paper 083, 16 pages
Fermion on Curved Spaces, Symmetries,
and Quantum Anomalies?
Mihai VISINESCU
Department of Theoretical Physics, Institute for Physics and Nuclear Engineering, Magurele,
P.O.Box MG-6, Bucharest, Romania
E-mail: mvisin@theory.nipne.ro
URL: http://www.theory.nipne.ro/~mvisin/
Received September 28, 2006, in final form November 21, 2006; Published online November 29, 2006
Original article is available at http://www.emis.de/journals/SIGMA/2006/Paper083/
Abstract. We review the geodesic motion of pseudo-classical spinning particles in curved
spaces. Investigating the generalized Killing equations for spinning spaces, we express the
constants of motion in terms of Killing–Yano tensors. Passing from the spinning spaces to
the Dirac equation in curved backgrounds we point out the role of the Killing–Yano tensors
in the construction of the Dirac-type operators. The general results are applied to the case of
the four-dimensional Euclidean Taub–Newman–Unti–Tamburino space. The gravitational
and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit
hidden symmetries analogous to the Runge–Lenz vector of the Kepler-type problem. Using
the Atiyah–Patodi–Singer index theorem for manifolds with boundaries, it is shown that the
these metrics make no contribution to the axial anomaly.
Key words: spinning particles; Dirac type operators; gravitational anomalies; axial anomalies
2000 Mathematics Subject Classification: 83C47; 83C40; 83C20
1 Introduction
The aim of this paper is to investigate the quantum objects, namely spin one half particles,
in curved spaces. Having in mind the lack of a satisfactory quantum theory for gravitational
interaction, this study is justified and not at all trivial.
In order to study the geodesic motions and the conserved classical and quantum quantities
for fermions on curved spaces, the symmetries of the backgrounds proved to be very important.
We mention that the following two generalization of the Killing (K) vector equation have become
of interest in physics:
1. A symmetric tensor field Kµ1...µr is called a Stäckel–Killing (S-K) tensor of valence r if
and only if
K(µ1...µr;λ) = 0. (1)
The usual Killing (K) vectors correspond to valence r = 1 while the hidden symmetries
are encapsulated in S-K tensors of valence r > 1.
2. A tensor fµ1...µr is called a Killing–Yano (K-Y) [1] tensor of valence r if it is totally
antisymmetric and it satisfies the equation
fµ1...(µr;λ) = 0. (2)
?This paper is a contribution to the Proceedings of the O’Raifeartaigh Symposium on Non-Perturbative and
Symmetry Methods in Field Theory (June 22–24, 2006, Budapest, Hungary). The full collection is available at
http://www.emis.de/journals/SIGMA/LOR2006.html
mailto:mvisin@theory.nipne.ro
http://www.theory.nipne.ro/~mvisin/
http://www.emis.de/journals/SIGMA/2006/Paper083/
http://www.emis.de/journals/SIGMA/LOR2006.html
2 M. Visinescu
These objects can be characterized in several equivalent ways. For example, K-Y tensors can
be defined as differential forms on a manifold whose covariant derivative is totally antisym-
metric.
There are many important occurrences of K-Y tensors in physics. For example, investigating
the geodesic equations on curved spaces, the K-Y tensors play an important role in the existence
of the constants of motion [2]. K-Y tensors do also appear in the study of the Klein–Gordon and
Dirac equations. There is a natural and profound connexion between K-Y tensors, Dirac-type
operators and supersymmetries [3, 4, 5, 6] having in mind their anticommuting property.
The models of relativistic particles with spin have been proposed for a long time and the
literature on the particle with spin grew vast [7, 4, 8]. The models involving only conventional
coordinates are called classical models while the models involving anticommuting coordinates
are generally called pseudo-classical.
In the beginning of this paper we discuss the relativistic spin one half particle models involving
anticommuting vectorial degrees of freedom which are usually called the spinning particles.
Spinning particles are in some sense the classical limit of the Dirac particles. The action of spin
one half relativistic particle with spinning degrees of freedom described by Grassmannian (odd)
variables was first proposed by Berezin and Marinov [7].
The generalized Killing equations for the configuration space of spinning particles (spinning
space) are analyzed and the solutions are expressed in terms of K-Y tensors. We mention that
the existence of a K-Y tensor is both a necessary and a sufficient condition for the existence of
a new supersymmetry for the spinning space [3, 9].
Passing from the pseudo-classical approach to the Dirac equation in curved spaces, we point
out the role of the K-Y tensors in the construction of non-standard Dirac-type operators. The
Dirac-type operators constructed with the aid of covariantly constant K-Y tensors are equivalent
with the standard Dirac operator. The non-covariantly constant K-Y tensors generates non-
standard Dirac operators which are not equivalent to the standard Dirac operator and they are
associated with the hidden symmetries of the space.
The general results are applied to the case of the four-dimensional Euclidean Taub–Newman–
Unti–Tamburino (Taub-NUT) space. The Taub-NUT metrics were found by Taub [10] and ex-
tended by Newman–Unti–Tamburino [11]. The Euclidean Taub-NUT metric has lately attracted
much attention in physics. Hawking [12] has suggested that the Euclidean Taub-NUT metric
might give rise to the gravitational analog of the Yang–Mills instanton. This metric is the space
part of the line element of the celebrated Kaluza–Klein monopole of Gross and Perry [13] and
Sorkin [14]. On the other hand, in the long distance limit, neglecting radiation, the relative
motion of two monopoles is described by the geodesics of this space [15]. The Taub-NUT family
of metrics is also involved in many other modern studies in physics like strings, membranes, etc.
The family of Taub-NUT metrics with their plentiful symmetries provides an excellent back-
ground to investigate the classical and quantum conserved quantities on curved spaces. In the
Taub-NUT geometry there are four K-Y tensors. Three of these are complex structures realizing
the quaternion algebra and the Taub-NUT manifold is hyper-Kähler [16]. In addition to these
three vector-like K-Y tensors, there is a scalar one which has a non-vanishing field strength and
which exists by virtue of the metric being type D. From the symmetry viewpoint, the geodesic
motion in Taub-NUT space admits a “hidden” symmetry of the Kepler type.
The K-Y tensors play an important role in theories with spin and especially in the Dirac
theory on curved spacetimes where they produce first order differential operators, called Dirac-
type operators, which anticommute with the standard Dirac one, Ds [17]. Another virtue of
the K-Y tensors is that they enter as square roots in the structure of several second rank S-K
tensors that generate conserved quantities in classical mechanics or conserved operators which
commute with Ds. The construction of Carter and McLenaghan depended upon the remarkable
fact that the (symmetric) S-K tensor Kµν involved in the constant of motion quadratic in the
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies 3
four-momentum pµ
Z = 1
2K
µνpµpν (3)
has a certain square root in terms of K-Y tensors fµν :
Kµν = fµλf
λ
ν . (4)
These attributes of the K-Y tensors lead to an efficient mechanism of supersymmetry espe-
cially when the S-K tensor Kµν in equation (3) is proportional with the metric tensor gµν and
the corresponding K-Y tensors in equation (4) are covariantly constant. Then each tensor of this
type, f i, gives rise to a Dirac-type operator, Di, representing a supercharge of the superalgebra
{Di, Dj} ∝ D2
sδij .
The necessary condition that a S-K tensor of valence two be written as the square of a K-Y
tensor is that it has at the most two distinct eigenvalues [18]. In the case of the generalized
Taub-NUT spaces [19, 20, 21] the S-K tensors involved in the Runge-Lenz vector cannot be
expressed as a product of K-Y tensors. The non-existence of the K-Y tensors on generalized
Taub-NUT metrics leads to gravitational quantum anomalies proportional to a contraction of
the S-K tensor with the Ricci tensor [22].
The index of the Dirac operator is a useful tool to investigate the topological properties of the
manifold as well as in computing axial quantum anomalies in field theories. In even-dimensional
spaces one can define the index of a Dirac operator as the difference between the number of
linearly independent zero modes with eigenvalues +1 and −1 under γ5. A remarkable result
states the equality of the indices of the standard and non-standard Dirac operators [23].
For the generalized Taub-NUT spaces, in [22] we computed the axial quantum anomaly,
interpreted as the index of the Dirac operator of these metrics, on annular domains and on
disks, with the non-local Atiyah–Patodi–Singer boundary condition. We also examined the
Dirac operator on the complete Euclidean space with respect to these metrics, acting in the
Hilbert space of square-integrable spinors. We found that this operator is not Fredholm, hence
even the existence of a finite index is not granted.
The structure of the paper is as follows: We start the next section with a description of the
pseudo-classical model for the spinning particles. In Section 3 we present the spinning Taub-
NUT space. In the next section we consider the Dirac equation on a curved background with
symmetries. In Section 5 the general results are applied to the case of the Euclidean Taub-NUT
space. In the next two sections we discuss the gravitational and axial anomalies for generalized
Euclidean Taub-NUT metrics. Section 8 is the conclusion. In two appendices we review the
symmetries and conserved quantities for geodesic motions in the Euclidean Taub-NUT space
and its generalizations.
2 Pseudo-classical approach
Spinning space is an extension of an ordinary Riemannian manifold, parametrized by local
coordinates {xµ}, to a graded manifold parametrized by local coordinates {xµ, ψµ}, with the
first set of variables being Grassmann-even (commuting) and the second set Grassmann-odd
(anticommuting) [7].
The dynamics of spinning point-particles in a curved space-time is described by the one-
dimensional σ-model with the action:
S =
∫ b
a
dτ
(
1
2gµν(x)ẋµẋν + i
2gµν(x)ψµDψ
ν
Dτ
)
.
4 M. Visinescu
In what follows we shall investigate the conserved quantities for geodesic motions in the case
of spinning manifolds. For this purpose we consider the world-line Hamiltonian given by
H = 1
2g
µνΠµΠν ,
where
Πµ = gµν ẋ
ν
is the covariant momentum.
For any constant of motion J (x,Π, ψ), the bracket with H vanishes
{H,J } = 0,
where the Poisson–Dirac brackets for functions of the covariant phase space variables (x,Π, ψ)
is defined by
{F,G} = DµF
∂G
∂Πµ
− ∂F
∂Πµ
DµG−Rµν
∂F
∂Πµ
∂G
∂Πν
+ i(−1)aF
∂F
∂ψµ
∂G
∂ψµ
.
The notations used are
DµF = ∂µF + Γλ
µνΠλ
∂F
∂Πν
− Γλ
µνψ
ν ∂F
∂ψλ
, Rµν = i
2ψ
ρψσRρσµν
and aF is the Grassmann parity of F : aF = (0, 1) for F = (even,odd).
If we expand J (x,Π, ψ) in a power series in the covariant momentum
J =
∞∑
n=0
1
n!
J (n)µ1...µn(x, ψ)Πµ1 · · ·Πµn
then the bracket {H,J } vanishes for arbitrary Πµ if and only if the components of J satisfy
the generalized Killing equations [3]:
J (n)
(µ1...µn;µn+1) +
∂J (n)
(µ1...µn
∂ψσ
Γσ
µn+1)λψ
λ = i
2ψ
ρψσRρσν(µn+1
J (n+1)ν
µ1...µn), (5)
where the parentheses denote symmetrization with norm one over the indices enclosed.
Explicit solutions can be constructed starting with the geometrical symmetries of the space.
For each K vector Rµ, i.e. R(µ;ν) = 0 there is a conserved quantity in the spinning case:
J = i
2R[µ;ν]ψ
µψν +Rµẋ
µ. (6)
A more involved example is given by a S-K tensor Kµν satisfying equation (1). Let us assume
that a Stäckel–Killing tensor Kµν can be written as a symmetrized product of two (different)
K-Y tensors (i 6= j) of valence 2:
Kµν
ij = 1
2(fµ
i λf
νλ
j + fν
i λf
µλ
j ).
The conserved quantity for the spinning space is [3]
Jij = 1
2!K
µν
ij ẋµẋν + J (1)µ
ij ẋµ + J (0)
ij , (7)
where
J (0)
ij = −1
4ψ
λψσψρψτ
(
Rµνλσf
µ
i ρf
ν
j τ + 1
2c
π
iλσ cjρτπ
)
,
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies 5
J (1)µ
ij = i
2ψ
λψσ
(
fν
i σDνf
µ
j λ + fν
j σDνf
µ
i λ + 1
2f
µρ
i cjλσρ + 1
2f
µρ
j ciλσρ
)
with ciµνλ = −2fi[νλ;µ].
In what follows we shall return to the equation (5) looking for solutions depending exclusively
on the Grassmann variables {ψµ}. The existence of such kind of solutions of the Killing equation
is one of the specific features of the spinning particle models.
The most remarkable class of solutions is represented by:
Qf = fµ1...µrΠ
µ1ψµ2 · · ·ψµr +
i
r + 1
(−1)r+1f[µ1...µr;µr+1] · ψµ1 · · ·ψµr+1 . (8)
This quantity is a superinvariant
{Qf , Q0} = 0,
where Q0 is the supercharge
Q0 = Πµ ψ
µ. (9)
Equations (6) and (7) describing the conserved quantities in the spinning space contains
specific spin terms involving even numbers of Grassmann variables.
3 Spinning Taub-NUT space
In the Taub-NUT case, the pseudo-classical approach sets the spin contributions to the angular
momentum, “relative electric charge” (20) and Runge–Lenz vector (23) [24, 25, 26, 27].
We start with the observation that the angular momentum and the “relative electric charge”
(20) are constructed with the aid of the K vectors (18). The corresponding conserved quantities
in the spinning case are the followings:
~J = ~B +~j, J4 = B4 + q
where we introduced the notation: ~J = (J1, J2, J3), ~B = (B1, B2, B3) and the spin corrections
are represented by the scalars BA
BA = i
2RA[µ;ν]ψ
µψν .
Using equation (8) we can construct from the K-Y tensors (21) and (22) the supercharges Qi
and QY . The supercharges Qi together with Q0 from equation (9) realize the N = 4 supersym-
metry algebra:
{QA, QB} = −2iδABH, A,B = 0, . . . , 3
making manifest the link between the existence of the K-Y tensors (21) and the hyper-Kähler
geometry of the Taub-NUT manifold. Moreover, the supercharges Qi transform as vectors at
spatial rotations
{Qi, Jj} = εijkQk, i, j, k = 1, 2, 3
while QY and Q0 behave as scalars.
To get the spin correction to the Runge–Lenz vector (23) it is necessary to investigate the
generalized Killing equations (5) for n = 1 with the S-K tensor ~Kµν in the right hand side. For
an analytic expression of the solution of this equation we shall use the decomposition (24) of the
S-K tensor ~Kµν in terms of K-Y tensors. Starting with this decomposition of the Runge–Lenz
vector ~K from the scalar case, it is possible to express the corresponding conserved quantity ~K
in the spinning case [24]:
Ki = 2m
(
−i{QY , Qi}+
1
8m2
JiJ4
)
.
6 M. Visinescu
4 Dirac equation on a curved background
In what follows we shall consider the Dirac operator on a curved background which has the form
Ds = γµ∇̂µ. (10)
In this expression the Dirac matrices γµ are defined in local coordinates by the anticommutation
relations
{γµ, γν} = 2gµνI
and ∇̂µ denotes the canonical covariant derivative for spinors. The essential properties of this
covariant derivative are summarized in the following equations
∇̂µγ
µ = 0, ∇̂[ρ∇̂µ] = 1
4Rαβρµγ
αγβ ,
where Rαβρµ denotes the components of the Riemann curvature tensor.
Carter and McLenaghan showed that in the theory of Dirac fermions for any isometry with
K vector Rµ there is an appropriate operator [17]:
Xk = −i
(
Rµ∇̂µ − 1
4γ
µγνRµ;ν
)
which commutes with the standard Dirac operator (10).
Moreover each K-Y tensor fµν produces a non-standard Dirac operator of the form
Df = −iγµ
(
f ν
µ ∇̂ν − 1
6γ
νγρfµν;ρ
)
(11)
which anticommutes with the standard Dirac operator Ds.
5 Dirac equation in the Taub-NUT space
When one uses Cartesian charts in the Taub-NUT geometry it is useful to consider the local
frames given by tetrad fields ê(x), such that gµν = δα̂β̂ ê
α̂
µ ê
β̂
ν . The four Dirac matrices γ̂α̂ that
satisfy {γ̂α̂, γ̂β̂} = 2δα̂β̂ , can be taken as
γ̂i = −i
(
0 σi
−σi 0
)
, γ̂4 =
(
0 12
12 0
)
, γ̂5 = γ̂1γ̂2γ̂3γ̂4 =
(
12 0
0 −12
)
.
In the Taub-NUT space the standard Dirac operator is
Ds = γ̂α̂∇̂α̂ = i
√
V ~̂γ · ~P +
i√
V
γ̂4P4 +
i
2
V
√
V γ̂4~Σ∗ · ~B,
where ∇̂α̂ are the components of the spin covariant derivatives with local indices
∇̂i = i
√
V Pi +
i
2
V
√
V εijkΣ∗jBk, ∇̂4 =
i√
V
P4 −
i
2
V
√
V ~Σ∗ · ~B.
These depend on the momentum operators Pi = −i(∂i − Ai∂4), P4 = −i∂4 which obey the
commutation rules [Pi, Pj ] = iεijkBkP4 and [Pi, P4] = 0. The spin matrices giving the spin
connection are:
Σ∗i = Si + i
2 γ̂
4γ̂i, Si = 1
2εijkS
jk,
where Sα̂β̂ = −i[γ̂α̂, γ̂β̂]/4.
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies 7
In the above representation of the Dirac matrices, the Hamiltonian operator of the massless
Dirac field reads [28, 29]:
H = γ̂5Ds =
(
0 V π∗ 1√
V√
V π 0
)
.
This is expressed in terms of the operators
π = σP −
iP4
V
, π∗ = σP +
iP4
V
, σP = ~σ · ~P
and the Klein–Gordon operator has the form:
∆ = −∇µg
µν∇ν = V π∗π = V ~P
2
+
1
V
P4
2.
The conserved observables can be found among the operators which commute or anticommute
with Ds and γ̂5 [28, 30]. That is the case of the total angular momentum ~J = ~L+ ~S, where the
orbital angular momentum is
~L = ~x× ~P − 4m
~x
r
P4.
Dirac-type operators are constructed from the K-Y tensors fi (i = 1, 2, 3) and fY using
equation (11). In the quantum Dirac theory these operators replace the supercharges (8) from
the pseudo-classical approach. Moreover we can give a physical interpretation of the covariantly
constant K-Y tensors defining the spin-like operators,
Σi = − i
4f
i
α̂β̂
γα̂γβ̂ =
(
σi 0
0 0
)
, (12)
that have similar properties to those of the Pauli matrices. In the pseudo-classical description
of a Dirac particle [3, 31], the covariantly constant K-Y tensors correspond to components of
the spin which are separately conserved.
Here, since the Pauli matrices commute with the Klein–Gordon operator, the spin-like op-
erators (12) commute with H2. Remarkable the existence of the K-Y tensors allows one to
construct Dirac-type operators [17]
Qi = −if i
α̂β̂
γα̂∇̂β̂ = {H, Σi}
which anticommute withDs and γ5 and commute withH [29]. and obey theN = 4 superalgebra,
including Q0 = iDs = iγ̂5H:
{QA, QB} = 2δABH
2, A,B, . . . = 0, 1, 2, 3
linked to the hyper-Kähler geometry of the Taub-NUT space.
Finally, using equation (11), from the fourth K-Y tensor fY of the Taub-NUT space we can
construct the Dirac-type operator [28, 32]
QY =
r
4m
{
H,
(
σr 0
0 −σrV
−1
)}
= i
r
4m
[
Q0,
(
σr 0
0 σrV
−1
)]
.
Let us observe that the Dirac-type operators QA (A = 0, 1, 2, 3) are characterized by the
fact that their quantal anticommutator close on the square of the Hamiltonian of the theory.
No such expectation applies to the non-standard, hidden Dirac operators QY which close on
8 M. Visinescu
a combination of different conserved operators. The Taub-NUT space has a special geometry
where the covariantly constant K-Y tensors exist by virtue of the metric being self-dual and the
Dirac-type operators generated by them are equivalent with the standard one. The fourth K-Y
tensor fY which is not covariantly constant exists by virtue of the metric being of type D. The
corresponding non-standard or hidden Dirac operator does not close on H. It is associated with
the hidden symmetries of the space allowing the construction of the conserved vector-operator
analogous to the Runge–Lenz vector of the Kepler problem.
The hidden symmetries of the Taub-NUT geometry are encapsulated in the non-trivial S-K
tensors Kiµν , (i = 1, 2, 3). For the Dirac theory the construction of the Runge–Lenz operator
can be done using products among the Dirac-type operators QY and Qi.
Let us define the operator [28]:
Ni = m {QY , Qi} − JiP4.
The components of the operator ~N commutes with H and satisfy the following commutation
relations
[Ni, P4] = 0, [Ni, Jj ] = iεijkNk, [Ni, Q0] = 0,
[Ni, Qj ] = iεijkQkP4, [Ni, Nj ] = iεijkJkF
2 + i
2εijkQiH
where F 2 = P4
2 − H2. In order to put the last commutator in a form close to that from the
scalar case [16, 38], we can redefine the components of the Runge–Lenz operator, ~K, as follows:
Ki = Ni + 1
2H
−1(F − P4)Qi
having the desired commutation relation [28]:
[Ki,Kj ] = iεijkJkF
2.
6 Gravitational anomalies
For the classical motions, a S-K tensor Kµν generate a quadratic constant of motion as in
equation (3). In the case of the geodesic motion of classical scalar particles, the fact that Kµν
is a S-K tensor satisfying (1), assures the conservation of (3).
If we go from the classical motion to the hidden symmetries of a quantized system, the
corresponding quantum operator analog of the quadratic function (3) is [2]:
K = DµK
µνDν , (13)
where Dµ is the covariant differential operator on the manifold with the metric gµν . Working
out the commutator of (13) with the scalar Laplacian
H = DµD
µ
we get from an explicit calculation gives [33]
[DµD
µ,K] = 2K(µν;λ)DµDνDλ + 3K(µν;λ)
;λDµDν
+
{
−4
3K
[µ
λ Rν]λ + 1
2gλσ(K(λσ;µ);ν −K(λσ;ν);µ) +K
(λµ;ν)
;λ
}
;ν
Dµ.
Note the very last terms are missing in the corresponding equation in [2].
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies 9
Concerning the hidden symmetry of the quantized system, the above commutator does not
vanishes on the strength of (1). If we take K to be a S-K tensor we are left with:
[H,K] = −4
3{K
[µ
λ Rν]λ};νDµ (14)
which means that in general the quantum operator K does not define a genuine quantum me-
chanical symmetry [5]. On a generic curved spacetime there appears a gravitational quantum
anomaly proportional to a contraction of the S-K tensor Kµν with the Ricci tensor Rµν .
It is obvious that for a Ricci-flat manifold this quantum anomaly is absent. However, a more
interesting situation is represented by the manifolds in which the S-K tensor Kµν can be written
as a product of K-Y tensors fµν [17].
The integrability condition for any solution of (2), written for K-Y tensors of valence r = 2,
is
R τ
µν[σ fρ]τ +R τ
σρ[µ fν]τ = 0.
Now contracting this integrability condition on the Riemann tensor for any solution of (2) we
get
fρ
(µRν)ρ = 0. (15)
Let us suppose that there exist a square of the S-K tensor Kµν of the form of a K-Y tensor fµν
as in equation (4). In case this should happen, the S-K equation (1) is automatically satisfied
and the integrability condition (15) becomes
Kρ
[µRν]ρ = 0.
It is interesting to observe that in this latter equation an antisymmetrization rather than
symmetrization is involved this time as compared to (15). But this relation implies the vanishing
of the commutator (14) for S-K tensors which admit a decomposition in terms of K-Y tensors.
Using the S-K tensor components of the Runge–Lenz vector (27) we can proceed to the
evaluation of the quantum gravitational anomaly for the generalized Taub-NUT metrics [19, 20,
21]. A direct evaluation [22] shows that the commutator (14) does not vanish.
To serve as a model for the evaluation of the commutator (14) involving the components of
the S-K tensors corresponding to the Runge–Lenz vector (27), we limit ourselves to give only the
components of the third S-K kµν
3 tensor in spherical coordinates. Its non vanishing components
are:
krr
3 = − ar cos θ
2(a+ br)
, krθ
3 = kθr
3 =
sin θ
2
, kθθ
3 =
(a+ 2br) cos θ
2r(a+ br)
,
kϕϕ
3 =
(a+ 2br) cot θ csc θ
2r(a+ br)
, kϕχ
3 = kχϕ
3 = −(2a+ 3br + br cos(2θ) csc2 θ
4r(a+ br)
,
kχχ
3 =
(a− adr2 + br(2 + cr) + (a+ 2br)) cot2 θ) cos θ
2r(a+ br)
.
Again, just to exemplify, we write down from the commutator (14) only the function which
multiplies the covariant derivative Dr:
3r cos θ
4(a+ br)3(1 + cr + dr2)2
{−2bd(2ad− bc)r3 + [3bd(2b− ac)− (ad+ bc)(2ad− bc)]r2
+ 2(ad+ bc)(2b− ac)r + a(2ad− bc) + (b+ ac)(2b− ac)} . (16)
10 M. Visinescu
Recall that the commutator (14) vanishes for the standard Euclidean Taub-NUT metric. It
is easy to see that the above expression (16) vanishes for all r if and only if the constants a, b,
c, d are constrained by (26).
In conclusion the operators constructed from symmetric S-K tensors are in general a source
of gravitational anomalies for scalar fields. However, when the S-K tensor is of the form (4),
then the anomaly disappears owing to the existence of the K-Y tensors.
7 Index formulas and axial anomalies
Atiyah, Patodi and Singer [34] discovered an index formula for first-order differential operators
on manifolds with boundary with a non-local boundary condition. Their index formula contains
two terms, none of which is necessarily an integer, namely a bulk term (the integral of a density
in the interior of the manifold) and a boundary term defined in terms of the spectrum of the
boundary Dirac operator. Endless trouble is caused in this theory by the condition that the
metric and the operator be of “product type” near the boundary.
In [22] we computed the index of the Dirac operator on annular domains and on disk, with
the non-local APS boundary condition. For the generalized Taub-NUT metrics [19, 20, 21], we
found that the index is a number-theoretic quantity which depends on the metrics. In particular,
our formula shows that the index vanishes on balls of sufficient large radius, but can be non-zero
for some values of the parameters c, d and of the radius.
Theorem 1. If c > −
√
15d
2 then the extended Taub-NUT metric does not contribute to the
axial anomaly on any annular domain (i.e., the index of the Dirac operator with APS boundary
condition vanishes).
Proof. The proof of this statement can be found in [22]. �
The result is natural since the index of an operator is unchanged under continuous deforma-
tions of that operator. In our case this would amount to a continuous change in the metric. The
absence of axial anomalies is due to the fact there exists an underlying structure that does not
depend on the metric. However for larger deformations of the metric there could appear discon-
tinuities in the boundary conditions and therefore the index could present jumps. Our formula
for the index involves a computable number-theoretic quantity depending on the parameters of
the metric.
We also examined the Dirac operator on the complete Euclidean space with respect to this
metric, acting in the Hilbert space of square-integrable spinors. We found that this operator is
not Fredholm, hence even the existence of a finite index is not granted.
We mentioned in [22] some open problems in connection with unbounded domains. The
paper [35] brings new results in this direction. First we showed that the Dirac operator on R4
with respect to the standard Taub-NUT metric does not have L2 harmonic spinors. This follows
rather easily from the Lichnerowicz formula, since the standard Taub-NUT metric has vanishing
scalar curvature. In particular, the index vanishes.
Theorem 2. For the standard Taub-NUT metric on R4 the Dirac operator does not have L2
solutions.
Proof. Recall that the standard Taub-NUT metric is hyper-Kähler, hence its scalar curvature κ
vanishes.
By the Lichnerowicz formula,
D2 = ∇∗∇+
κ
4
= ∇∗∇.
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies 11
Let φ ∈ L2 be a solution of D in the sense of distributions. Then, again in distributions,
∇∗∇φ = 0. The operator ∇∗∇ is essentially self-adjoint with domain C∞c (R4,Σ4), which implies
that its kernel equals the kernel of ∇. Hence ∇φ = 0. Now a parallel spinor has constant
pointwise norm, hence it cannot be in L2 unless it is 0, because the volume of the metric dsK
2
is infinite. Therefore φ = 0. �
8 Concluding remarks
In the pseudo-classical spinning particle models in curved spaces from covariantly constant K-Y
tensors fµν can be constructed conserved quantities of the type fµνψ
µψν depending on the
Grassmann variables {ψµ} [24]. The Grassmann variables {ψµ} transform as a tangent space
vector and describe the spin of the particle. The antisymmetric tensor Sµν = −iψµψν generates
the internal part of the local tangent space rotations. For example, in the spinning Euclidean
Taub-NUT space such operators correspond to components of the spin which are separately
conserved [31].
The construction of the new supersymmetries in the context of pseudo-classical mechanics
can be carried over straightforwardly to the case of quantum mechanics by the usual replacement
of phase space coordinates by operators and Poisson–Dirac brackets by anticommutators [7]. In
terms of these operators the supercharges are replaced by Dirac-type operators [36]. In both
cases, the correspondence principle leads to equivalent algebraic structures making obvious the
relations between these approaches [31].
In the study of the Dirac equation in curved spaces, it has been proved that the K-Y tensors
play an essential role in the construction of new Dirac-type operators. The Dirac-type operators
constructed with the aid of covariantly constant K-Y tensors are equivalent with the standard
Dirac operator [37]. The non-covariantly constant K-Y tensors generates non-standard Dirac
operators which are not equivalent to the standard Dirac operator and they are associated with
the hidden symmetries of the space.
The Taub-NUT space has a special geometry where the covariantly constant K-Y tensors
exist by virtue of the metric being self-dual and the Dirac-type operators generated by them
are equivalent with the standard one. The fourth K-Y tensor fY which is not covariantly
constant exists by virtue of the metric being of type D. The corresponding non-standard or
hidden Dirac operator does not close on H and is not equivalent to the Dirac-type operators.
As it was mentioned, it is associated with the hidden symmetries of the space allowing the
construction of the conserved vector-operator analogous to the Runge–Lenz vector of the Kepler
problem.
There is a relationship between the absence of anomalies and the existence of the K-Y tensors.
For scalar fields, the decomposition (4) of S-K tensors in terms of K-Y tensors guarantees the
absence of gravitational anomalies. Otherwise operators constructed from symmetric tensors
are in general a source of anomalies proportional to the Ricci tensors.
However for the axial anomaly the role of K-Y tensors is not so obvious. The topological
aspects are more important and the absence of K-Y tensors does not imply the appearance of
anomalies.
A Euclidean Taub-NUT space
Let us consider the Taub-NUT space and the chart with Cartesian coordinates xµ (µ, ν =
1, 2, 3, 4) having the line element
ds2 = gµνdx
µdxν = f(r)(d~x)2 +
g(r)
16m2
(dx4 +Aidx
i)2, (17)
12 M. Visinescu
where ~x denotes the three-vector ~x = (r, θ, ϕ), (d~x)2 = (dx1)2 + (dx2)2 + (dx3)2 and ~A is the
gauge field of a monopole
div ~A = 0, ~B = rot ~A = 4m
~x
r3
.
The real number m is the parameter of the theory which enter in the form of the functions
f(r) = g−1(r) = V −1(r) =
4m+ r
r
and the so called NUT singularity is absent if x4 is periodic with period 16πm. Sometimes it is
convenient to make the coordinate transformation 4m(χ+ ϕ) = −x4 with 0 ≤ χ < 4π.
In the Taub-NUT geometry there are four K vectors [16, 38]
DA = Rµ
A ∂µ, A = 1, 2, 3, 4, (18)
where
D1 = − sinϕ
∂
∂θ
− cosϕ cot θ
∂
∂ϕ
+
cosϕ
sin θ
∂
∂χ
,
D2 = cosϕ
∂
∂θ
− sinϕ cot θ
∂
∂ϕ
+
sinϕ
sin θ
∂
∂χ
,
D3 =
∂
∂ϕ
, D4 =
∂
∂χ
. (19)
D4 which generates the U(1) of χ translations, commutes with the other K vectors. In turn
the remaining three vectors, corresponding to the invariance of the metric (17) under spatial
rotations (A = 1, 2, 3), obey an SU(2) algebra with
[D1, D2] = −D3, etc.
In the bosonic case these invariances would correspond to the conservation of angular mo-
mentum and the so called “relative electric charge”:
~j = ~r × ~p+ q
~r
r
, q = g(r)(θ̇ + cos θϕ̇), (20)
where ~p = V −1~̇r is the mechanical momentum.
On the other hand, four K-Y tensors of valence 2 are known to exist in the Taub-NUT
geometry. The first three are covariantly constant
fi = 8m(dχ+ cos θdϕ) ∧ dxi − εijk
(
1 +
4m
r
)
dxj ∧ dxk,
Dµf
ν
iλ = 0, i, j, k = 1, 2, 3. (21)
The f i define three anticommuting complex structures of the Taub-NUT manifold, their com-
ponents realizing the quaternion algebra
f if j + f jf i = −2δij , f if j − f jf i = −2εijkfk.
The existence of these K-Y tensors is linked to the hyper-Kähler geometry of the manifold
and shows directly the relation between the geometry and the N = 4 supersymmetric extension
of the theory [3, 31].
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies 13
The fourth K-Y tensor is
fY = 8m(dχ+ cos θdϕ) ∧ dr + 4r(r + 2m)
(
1 +
r
4m
)
sin θdθ ∧ dϕ (22)
having a non-vanishing covariant derivative
fY rθ;ϕ = 2
(
1 +
r
4m
)
r sin θ.
In Taub-NUT space there is a conserved vector analogous to the Runge-Lenz vector of the
Kepler-type problem [16, 39, 40]
~K = 1
2
~Kµν ẋ
µẋν = ~p×~j +
(
q2
4m
− 4mE
)
~r
r
, (23)
where the conserved energy is
E = 1
2gµν ẋ
µẋν .
The components Kiµν involved with the Runge–Lenz vector (23) are Stäckel–Killing tensors
satisfying the equations
Ki(µν;λ) = 0, Kiµν = Kiνµ
and they can be expressed as symmetrized products of the K-Y tensors fi, fY and K vec-
tors RA [24]
Kiµν −
1
8m
(R4µRiν +R4νRiµ) = m
(
fY µλfi
λ
ν + fY νλfi
λ
µ
)
. (24)
B Generalized Taub-NUT spaces
In what follows we restrict ourselves to the generalized Taub-NUT manifolds whose metrics are
defined on R4 \ {0} by the line element [19, 20, 21]:
dsK
2 = gµν(x)dxµdxν
= f(r)(dr2 + r2dθ2 + r2 sin2 θ dϕ2) + g(r)(dχ+ cos θ dϕ)2, (25)
where the angle variables (θ, ϕ, χ) parametrize the sphere S3 with 0 ≤ θ < π, 0 ≤ ϕ < 2π,
0 ≤ χ < 4π, while the functions
f(r) =
a+ br
r
, g(r) =
ar + br2
1 + cr + dr2
.
depend on the arbitrary real constants a, b, c and d.
Here it is worth pointing out that the above metrics are related to the Berger family of
metrics on 3-spheres [41]. These are introduced starting with the Hopf fibration πH : S3 → S2
that defines the vertical subbundle V ⊂ TS3 and its orthogonal complement H ⊂ TS3 with
respect to the standard metric gS3 on S3. Denoting with gH and gV the restriction of gS3 to the
horizontal, respectively the vertical bundle, one finds that the corresponding line elements are
dsH
2 = 1
4ds2
2 and dsV
2 = 1
4(ds32 − ds2
2). For each constant λ > 0 the Berger metric on S3 is
defined by the formula
gλ = gH + λ2gV .
14 M. Visinescu
This line element can be written in terms of the Berger metrics as
dsK
2 = (ar + br2)
(
dr2
r2
+ 4dsλ(r)
2
)
,
where dsλ(r)
2 = (gλ(r))µνdx
µdxν and
λ(r) =
1√
1 + cr + dr2
.
If one takes the constants
c =
2b
a
, d =
b2
a2
(26)
the generalized Taub-NUT metric becomes the original Euclidean Taub-NUT metric up to a con-
stant factor.
By construction, the spaces with the metric (25) have four K vectors (19). The corresponding
constants of motion in generalized Taub-NUT backgrounds consist of a conserved quantity for
the cyclic variable χ
q = g(r)(χ̇+ cos θϕ̇)
and the angular momentum vector
~J = ~x× ~p+ q
~x
r
, ~p = f(r)~̇x.
The remarkable result of Iwai and Katayama [19, 20, 21] is that the generalized Taub-NUT
space (25) admits a hidden symmetry represented by a conserved vector, quadratic in 4-velocities,
analogous to the Runge–Lenz vector of the following form
~K = ~p× ~J + κ
~x
r
. (27)
The constant κ involved in the Runge–Lenz vector (27) is κ = −aE+ 1
2cq
2 where the conserved
energy E is
E =
~p 2
2f(r)
+
q2
2g(r)
.
The components Ki = kµν
i pµpν of the vector ~K (27) involve three S-K tensors kµν
i , i = 1, 2, 3
satisfying (1).
Acknowledgements
It is a pleasure to thank the organizers of the O’Raifeartaigh Symposium on Non-Perturbative
and Symmetry Methods in Field Theory for the invitation to present this work. This work is
partially supported by a CEEX-MEC (Romania) Program.
[1] Yano K., Some remarks on tensor fields and curvature, Ann. Math., 1952, V.55, 328–341.
[2] Carter B., Killing tensor quantum numbers and conserved currents in curved space, Phys. Rev. D, 1977,
V.16, 3395–3414.
[3] Gibbons G.W., Rietdijk R.H., van Holten J.W., SUSY in the sky, Nuclear Phys. B, 1993, V.404, 42–64,
hep-th/9303112.
http://arxiv.org/abs/hep-th/9303112
Fermion on Curved Spaces, Symmetries, and Quantum Anomalies 15
[4] van Holten J.W., Fermions and world-line supersymmetry, Nuclear Phys. Proc. Suppl., 1996, V.49, 319–325,
hep-th/9512068.
[5] Cariglia M., Quantum mechanics of Yano tensors: Dirac equation in curved spacetimes, Classical Quantum
Gravity, 2004, V.21, 1051–1077, hep-th/0305153.
[6] Cotăescu I.I., Visinescu M., Symmetries of the Dirac operators associated with covariantly constant Killing–
Yano tensors, Classical Quantum Gravity, 2004, V.21, 11–28, hep-th/0301108.
[7] Berezin F.A., Marinov M.S., Particle spin dynamics as the Grassmann variant of classical mechanics, Ann.
Physics, 1977, V.104, 336–362.
[8] Mohseni M., Charged particles with spin in a gravitational wave and a uniform magnetic field, Internat. J.
Modern Phys. D, 2006, V.15, 121–130, gr-qc/0510094.
[9] van Holten J.W., Rietdijk R.H., Symmetries and motions in manifolds, J. Geom. Phys., 1993, V.11, 559–577,
hep-th/9205074.
[10] Taub A.H., Empty space-times admitting a three parameter group of motions, Ann. of Math., 1951, V.53,
472–490.
[11] Newman E., Tamburino L., Unti T., Empty-space generalization of the Schwartzschild metric, J. Math.
Phys., 1963, V.4, 915–923.
[12] Hawking S.W., Gravitational instantons, Phys. Lett. A, 1977, V.60, 81–83.
[13] Gross D.J., Perry M.J., Magnetic monopoles in Kaluza–Klein theories, Nuclear Phys. B, 1983, V.226, 29–48.
[14] Sorkin R., Kaluza–Klein monopoles, Phys. Rev. Lett., 1983, V.51, 87–90.
[15] Atiyah M.F., Hitchin N.J., The geometry and dynamics of magnetic monopoles, Princeton, Princeton Uni-
versity Press, 1987.
[16] Gibbons G.R., Ruback P.J., The hidden symmetries of multi-centre metrics, Comm. Math. Phys., 1988,
V.115, 267–300.
[17] Carter B., McLenaghan R.G., Generalized total angular momentum operator for the Dirac equation in
curved space-time, Phys. Rev. D, 1979, V.19, 1093–1097.
[18] Visinescu M., Generalized Taub-NUT metrics and Killing–Yano tensors, J. Phys. A: Math. Gen., 2000,
V.33, 4383–4391, hep-th/9911126.
[19] Iwai T., Katayama N., On extended Taub-NUT metrics, J. Geom. Phys., 1993, V.12, 55–75.
[20] Iwai T., Katayama N., Two classes of dynamical systems all of whose bounded trajectories are closed,
J. Math. Phys., 1994, V.35, 2914–2933.
[21] Iwai T., Katayama N., Two kinds of generalized Taub-NUT metrics and the symmetry of associated dyna-
mical systems, J. Phys. A: Math. Gen., 1994, V.27, 3179–3190.
[22] Cotăescu I., Moroianu S., Visinescu M., Quantum anomalies for generalized Euclidean Taub-NUT metrics,
J. Phys. A: Math. Gen., 2005, V.38, 7005–7019, math-ph/0411047.
[23] van Holten J.W., Waldron A., Peeters K., An index theorem for non-standard Dirac operators, Classical
Quantum Gravity, 1999, V.16, 2537–2544, hep-th/9901163.
[24] Vaman D., Visinescu M., Spinning particles in Taub-NUT space, Phys. Rev. D, 1998, V.57, 3790–3793,
hep-th/9707175.
[25] Visinescu M., The geodesic motion in Taub-NUT spinning space, Classical Quantum Gravity, 1994, V.11,
1867–1880, hep-th/9401036.
[26] Baleanu D., Spinning particles in the Euclidean Taub-NUT space, Helv. Phys. Acta, 1994, V.67, 405–418.
[27] Baleanu D., Geodesic motion on extended Taub-NUT spinning space, Gen. Relativity Gravitation, 1998,
V.30, 195–207.
[28] Cotăescu I.I., Visinescu M., Dynamical algebra and Dirac quantum modes in the Taub-NUT background,
Classical Quantum Gravity, 2001, V.18, 3383–3393, hep-th/0102083.
[29] Cotăescu I.I., Visinescu M., Runge–Lenz operator for Dirac field in Taub-NUT background, Phys. Lett. B,
2001, V.502, 229–234, hep-th/0101163.
[30] Cotăescu I.I., Visinescu M., Schrödinger quantum modes in the Taub-NUT background, Modern Phys.
Lett. A, 2000, V.15, 145–157, hep-th/9911014.
[31] van Holten J.W., Supersymmetry and the geometry of Taub-NUT, Phys. Lett. B, 1995, V.342, 47–52.
[32] Cotăescu I.I., Visinescu M., Hierarchy of Dirac, Pauli, and Klein–Gordon conserved operators in Taub-NUT
background, J. Math. Phys., 2002, V.43, 2978–2987, hep-th/0107205.
http://arxiv.org/abs/hep-th/9512068
http://arxiv.org/abs/hep-th/0305153
http://arxiv.org/abs/hep-th/0301108
http://arxiv.org/abs/gr-qc/0510094
http://arxiv.org/abs/hep-th/9205074
http://arxiv.org/abs/hep-th/9911126
http://arxiv.org/abs/math-ph/0411047
http://arxiv.org/abs/hep-th/9901163
http://arxiv.org/abs/hep-th/9707175
http://arxiv.org/abs/hep-th/9401036
http://arxiv.org/abs/hep-th/0102083
http://arxiv.org/abs/hep-th/0101163
http://arxiv.org/abs/hep-th/9911014
http://arxiv.org/abs/hep-th/0107205
16 M. Visinescu
[33] Vogel J.P.B., Yano tensors, in Essay in Partial Fulfillment of the Requirement for the Certificate of Advanced
Study in Mathematics (2005, Sidney Sussex College, Cambridge, UK), unpublished, Private communication.
[34] Atiyah M.F., Patodi V.K., Singer I.M., Spectral asymmetry and Riemannian geometry. I, Math. Proc.
Cambridge Philos. Soc., 1975, V.77, 43–69.
[35] Moroianu S., Visinescu M., Finiteness of the L2-index of the Dirac operator of generalized Euclidean Taub-
NUT metrics, J. Phys. A: Math. Gen., 2006, V.39, 6575–6581, math-ph/0511025.
[36] Rietdijk R.H., Applications of supersymmetric quantum mechanics, PhD Thesis, Univ. Amsterdam, 1992.
[37] Cotăescu I.I., Visinescu M., Superalgebras of Dirac operators on manifolds with special Killing–Yano tensors,
Fortschr. Phys., 2006, V.54, 1142–1164, hep-th/0601200.
[38] Gibbons G.W., Manton N.S., Classical and quantum dynamics of BPS monopoles, Nuclear Phys. B, 1986,
V.274, 183–224.
[39] Feher L.Gy., Horvathy P.A., Dynamical symmetry of monopole scattering, Phys. Lett. B, 1987, V.183,
182–186.
[40] Cordani B., Feher L.Gy., Horvathy P.A., O(4,2) dynamical symmetry of the Kaluza–Klein monopole, Phys.
Lett. B, 1988, V.201, 481-486.
[41] Hitchin N., Harmonic spinors, Adv. Math., 1974, V.14, 1–55.
http://arxiv.org/abs/hep-th/0601200
http://arxiv.org/abs/hep-th/0601200
1 Introduction
2 Pseudo-classical approach
3 Spinning Taub-NUT space
4 Dirac equation on a curved background
5 Dirac equation in the Taub-NUT space
6 Gravitational anomalies
7 Index formulas and axial anomalies
8 Concluding remarks
A Euclidean Taub-NUT space
B Generalized Taub-NUT spaces
|