On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability
Short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability of the corresponding dynamical system i...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2010
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146092 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability / J. Golenia // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146092 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1460922019-02-09T01:23:22Z On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability Golenia, J. Pavlov, M.V. Popowicz, Z. Prykarpatsky, A.K. Short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability of the corresponding dynamical system is stated and an infinite hierarchy of commuting to each other conservation laws of dispersive type are found. The well defined regularization of the model is constructed and its Lax type integrability is discussed. A generalized hydrodynamical Riemann type system is considered, infinite hierarchies of conservation laws, related compatible Poisson structures and a Lax type representation for the special case N = 3 are constructed. 2010 Article On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability / J. Golenia // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35C05; 37K10 http://dspace.nbuv.gov.ua/handle/123456789/146092 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability
of the corresponding dynamical system is stated and an infinite hierarchy of commuting to
each other conservation laws of dispersive type are found. The well defined regularization
of the model is constructed and its Lax type integrability is discussed. A generalized hydrodynamical Riemann type system is considered, infinite hierarchies of conservation laws, related compatible Poisson structures and a Lax type representation for the special case N = 3 are constructed. |
format |
Article |
author |
Golenia, J. Pavlov, M.V. Popowicz, Z. Prykarpatsky, A.K. |
spellingShingle |
Golenia, J. Pavlov, M.V. Popowicz, Z. Prykarpatsky, A.K. On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Golenia, J. Pavlov, M.V. Popowicz, Z. Prykarpatsky, A.K. |
author_sort |
Golenia, J. |
title |
On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability |
title_short |
On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability |
title_full |
On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability |
title_fullStr |
On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability |
title_full_unstemmed |
On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability |
title_sort |
on a nonlocal ostrovsky–whitham type dynamical system, its riemann type inhomogeneous regularizations and their integrability |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146092 |
citation_txt |
On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability / J. Golenia // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT goleniaj onanonlocalostrovskywhithamtypedynamicalsystemitsriemanntypeinhomogeneousregularizationsandtheirintegrability AT pavlovmv onanonlocalostrovskywhithamtypedynamicalsystemitsriemanntypeinhomogeneousregularizationsandtheirintegrability AT popowiczz onanonlocalostrovskywhithamtypedynamicalsystemitsriemanntypeinhomogeneousregularizationsandtheirintegrability AT prykarpatskyak onanonlocalostrovskywhithamtypedynamicalsystemitsriemanntypeinhomogeneousregularizationsandtheirintegrability |
first_indexed |
2025-07-10T23:08:33Z |
last_indexed |
2025-07-10T23:08:33Z |
_version_ |
1837303253342093312 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 6 (2010), 002, 13 pages
On a Nonlocal Ostrovsky–Whitham Type
Dynamical System, Its Riemann Type Inhomogeneous
Regularizations and Their Integrability?
Jo lanta GOLENIA †1, Maxim V. PAVLOV †2,
Ziemowit POPOWICZ †3 and Anatoliy K. PRYKARPATSKY †4†5
†1 The Department of Applied Mathematics, AGH University of Science and Technology,
Kraków 30059, Poland
E-mail: golenia@agh.edu.pl
†2 Department of Mathematical Physics, P.N. Lebedev Physical Institute,
53 Leninskij Prospekt, Moscow 119991, Russia
E-mail: M.V.Pavlov@lboro.ac.uk
†3 The Institute for Theoretical Physics, University of Wroc law, Wroc law 50204, Poland
E-mail: ziemek@ift.uni.wroc.pl
URL: www.ift.uni.wroc.pl/∼ziemek/
†4 The Department of Mining Geodesics, AGH University of Science and Technology,
Kraków 30059, Poland
†5 Department of Economical Cybernetics, Ivan Franko State Pedagogical University,
Drohobych, Lviv Region, Ukraine
E-mail: pryk.anat@ua.fm
Received October 14, 2009, in final form January 03, 2010; Published online January 07, 2010
doi:10.3842/SIGMA.2010.002
Abstract. Short-wave perturbations in a relaxing medium, governed by a special reduction
of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the
gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability
of the corresponding dynamical system is stated and an infinite hierarchy of commuting to
each other conservation laws of dispersive type are found. The well defined regularization
of the model is constructed and its Lax type integrability is discussed. A generalized hyd-
rodynamical Riemann type system is considered, infinite hierarchies of conservation laws,
related compatible Poisson structures and a Lax type representation for the special case
N = 3 are constructed.
Key words: generalized Riemann type hydrodynamical equations; Whitham type dynamical
systems; Hamiltonian systems; Lax type integrability; gradient-holonomic algorithm
2010 Mathematics Subject Classification: 35C05; 37K10
1 Introduction
Many important problems of propagating waves in nonlinear media with distributed parameters,
for instance, invisible non-dissipative dark matter, playing a decisive role [9, 10] in the formation
of large scale structure in the Universe like galaxies, clusters of galaxies, super-clusters, can be
described by means of evolution differential equations of special type. It is also well known [2,
?This paper is a contribution to the Proceedings of the Eighth International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 21–27, 2009, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA/symmetry2009.html
mailto:golenia@agh.edu.pl
mailto:M.V.Pavlov@lboro.ac.uk
mailto:pryk.anat@ua.fm
www.ift.uni.wroc.pl/~ziemek/
mailto:pryk.anat@ua.fm
http://dx.doi.org/10.3842/SIGMA.2010.002
http://www.emis.de/journals/SIGMA/symmetry2009.html
2 J. Golenia, M.V. Pavlov, Z. Popowicz and A.K. Prykarpatsky
17, 25, 28] that shortwave perturbations in a relaxing one dimensional medium can be described
by means of some reduction of the Ostrovsky equations, coinciding with the Whitham type
evolution equation
du/dt = 2uux +
∫
R
K(x, s)usds, (1.1)
discussed first in [28]. Here the kernelK : R×R → R depends on the medium elasticity properties
with spatial memory and can, in general, be a function of the pressure gradient ux ∈ C∞(R; R),
evolving with respect to equation (1.1). In particular, if the nonlinear medium is endowed still
with spatial memory properties, that is the wave amplitude depends on the orbit, swept by its
front, the propagation of the corresponding wave can be modeled by means of the so called
generalized Ostrovsky evolution equations [20]. Namely, if to put K(x, s) = 1
2 |x − s|, x, s ∈ R,
then equation (1.1) can be reduced to
du/dt = 2uux + ∂−1u,
which was, in particular, studied before in [17, 21, 22].
Since some media possess elasticity properties depending strongly on the spatial pressure
gradient ux, x ∈ R, the corresponding Whitham type kernel looks like
K(x, s) := −θ(x− s)us (1.2)
for x, s ∈ R, naturally modeling the relaxing spatial memory effects. The resulting equation (1.1)
with the kernel (1.2) becomes
du/dt = 2uux − ∂−1u2
x := K[u], (1.3)
which appears to possess very interesting mathematical properties. The latter will be the main
topic of the next sections below.
Owing to the results, obtained before in [25, 26], the dynamical system (1.3) appeared to be
a Lax type integrable bi-Hamiltonian flow, but with ill posed temporal evolution. As it was
demonstrated in [26], a suitable finite-dimensional reduction scheme, if applied to the correspon-
ding hierarchy of conservation laws for constructing explicit solutions to the Ostrovsky–Whitham
type nonlinear dynamical system (1.3) by means of quadratures, meets some technical problems.
Some of these integrability aspects were before presented in [2], where a suitable well posed
regularization of the equation (1.3) in the form
ut = 2uux − v
vt = 2uvx
}
:= K[u, v] (1.4)
for treating this nonlocality problem was proposed.
Below the well posed integrability problem for the Ostrovsky–Whitham type nonlinear and
nonlocal dynamical system (1.4) will be reanalyzed in detail making use of this regulariza-
tion scheme. The corresponding implectic structures and Lax type representations are found
by means of the differential-geometric tools, devised and extended in [7, 8, 15, 24]. A natu-
ral Riemann type generalization of the dynamical system (1.4) is proposed, owing to a recent
observation by D. Holm and M. Pavlov:
DN
t u = 0, N ∈ Z+, (1.5)
which at N = 2 is exactly equivalent to the system (1.4). The integrability properties of
equation (1.5) at N = 3 were analyzed in detail, the conservation laws, corresponding compatible
implectic structures and Lax type representation are constructed.
On a Nonlocal Ostrovsky–Whitham Type Dynamical System 3
It is worth to mention that the obtained in this work Lax type pair (3.6) for the regularized
dynamical system (1.4) was found first in work [4]. It coincides with those found later in [23],
making use of a very special bi-Lagrangian representation of the dynamical system (1.4). But
the existence of the singular co-implectic structure (3.14) in these references was not stated.
A detailed analysis of the relationships between solutions of dynamical systems (1.3) and (1.4),
based on a reciprocal transformation, suggested by M. Pavlov in [23], was presented recently
in [27]. Mention also work [14], where the geometric aspects of the equation like (2.1) were
studied.
Note also here that theory of integrable homogenous hydrodynamic type systems with distinct
characteristic velocities was constructed by S.P. Tsarev. In this paper we consider the first
example in a literature of nonhomogeneous integrable hydrodynamic type systems with a sole
characteristic velocity. Such a theory does not exist at this moment.
2 A regularization scheme and the geometric
integrability problem
Define a smooth periodic function v ∈ C∞2π(R; R), such that
v := ∂−1u2
x
for any x, t ∈ R, where the function u ∈ C∞2π(R; R) solves equation (1.3). Then it is easy to state
that the following regularized nonlinear dynamical system
ut = 2uux − v
vt = 2uvx
}
:= K[u, v] (2.1)
of hydrodynamic type, which was introduced before in [6], studied in [2, 4, 12, 13, 19] and
analyzed as a Gurevich–Zybin system in [23], and is already well defined on the extended
2π-periodic functional space M := C∞2π(R; R2) and equivalent on the functional submanifold
Mred := {(u, v) ∈ M : vx − u2
x = 0} to that given by expression (1.3), as it was mentioned
in [2] and discussed recently in [27]. The system (2.1) can be rewritten as the following set of
equations
ut = 2uux − v, vt = 2uvx,
ux = w, vx = uxw,
wt = vx + 2uwx, (2.2)
which is equivalent to a set of differential two-forms
{α} :=
{
α(1) = du ∧ dx+ 2udu ∧ dt− vdx ∧ dt, α(2) = dv ∧ dx+ 2udv ∧ dt,
α(3) = du ∧ dt− wdx ∧ dt, α(4) = dv ∧ dt− wdu ∧ dt,
α(5) = dw ∧ dx+ dv ∧ dt+ 2udw ∧ dt
}
. (2.3)
This set of two-forms generates the closed ideal I(α), since
d α(1) = −α(2) ∧ dt, dα(2) = 2du ∧ α(4), dα(3) = −α(5) ∧ dt,
dα(4) = −dw ∧ α(3) − wdt ∧ α(5), dα(5) = −2dw ∧ α(3) − 2wdt ∧ α(5).
The set of differential forms (2.3), being integrable, defines the integral submanifold M̄ by
means of the condition I(α) = 0. Making now use of the differential-geometric method devised
4 J. Golenia, M.V. Pavlov, Z. Popowicz and A.K. Prykarpatsky
in [11, 18, 24] and extending algorithmically the approach of [15], we will look for a reduced
upon the integral submanifold M̄ connection one-form Γ, belonging to some not yet determined
its holonomy Lie algebra G. This 1-form can be represented as follows:
Γ = A(u, v, w)dx+ B(u, v, w)dt, (2.4)
where the elements A,B ∈ G satisfy determining equations
Ω =
∂A
∂u
du ∧ dx+
∂A
∂v
dv ∧ dx+
∂A
∂w
dw ∧ dx+
∂B
∂u
du ∧ dt
+
∂B
∂v
dv ∧ dt+
∂B
∂w
dw ∧ dt+ [A,B]dx ∧ dt
⇒ g1(du ∧ dx+ 2udu ∧ dt− vdx ∧ dt) + g2(dv ∧ dx+ 2udv ∧ dt)
+ g3(du ∧ dt− wdx ∧ dt) + g4(dv ∧ dt− wdu ∧ dt)
+ g5(dw ∧ dx+ 2udw ∧ dt+ dv ∧ dt) ∈ I(α)⊗ G (2.5)
for some G-valued functions g1, . . . , g5 ∈ G on M. From (2.5) one finds that
∂A
∂u
= g1,
∂A
∂v
= g2,
∂A
∂w
= g5,
∂B
∂u
= 2ug1 + g3 − wg4,
∂B
∂v
= 2ug2 + g4 + g5,
∂B
∂w
= 2ug5, [A,B] = −vg1 − wg3. (2.6)
Thereby, from the obtained set of relationships (2.6) one can find that
B = 2uA+ C(u, v), g4 =
∂C
∂v
− ∂A
∂w
, g3 = 2A+
∂C
∂u
+ w
∂C
∂v
− w
∂A
∂w
,
[A, C] = −v∂A
∂u
− 2wA− w
∂C
∂u
− w2∂C
∂v
+ w2∂A
∂w
,
serving for final searching for connection (2.4).
3 The bi-Hamiltonian structure and Lax-type representation
Consider the following polynomial expansion of the element A(u, v;w) ∈ G with respect to the
variable w:
A = A0(u, v) +A1(u, v)w +A2(u, v)w2
and substitute it into the last equation of (2.6). As a result we obtain:
[A0, C] = −v∂A0
∂u
, [A1, C] = −v∂A1
∂u
− 2A0 −
∂C
∂u
,
[A2, C] = −v∂A2
∂u
− ∂C
∂v
−A1, (3.1)
or
A1 = [C,A2]− v
∂A2
∂u
− ∂C
∂v
. (3.2)
which can be substituted into the second equation of (3.1):
[[C,A2], C]− 2v
[
∂A2
∂u
,C
]
−
[
∂C
∂v
,C
]
= −v
[
∂C
∂u
,A2
]
− v2∂
2A2
∂u2
− v
∂2C
∂u∂v
− 2A0 −
∂C
∂u
.
On a Nonlocal Ostrovsky–Whitham Type Dynamical System 5
Thus, recalling (3.1) and (3.2), we have that
2A0 = [C, [C,A2]] + 2v
[
∂A2
∂u
,C
]
+
[
∂C
∂v
,C
]
− v
[
∂C
∂u
,A2
]
− v2∂
2A2
∂u2
− v
∂2C
∂u∂v
− ∂C
∂u
,
[A0, C] = −v∂A0
∂u
, A1 = [C,A2]− v
∂A2
∂u
− ∂C
∂v
. (3.3)
Now we will assume that the element C := C0 is constant and the elements A0 and A2 are linear
with respect to variables u and v, that is
A0 = A(0)
0 +A(1)
0 u+A(2)
0 v, A2 = A(0)
2 +A(1)
2 u+A(2)
2 v.
Whence and from (3.3) one gets:
2A(0)
0 = [C0, [C0,A(0)
2 ]], [A(1)
0 , C0] = 0, [A(2)
0 , C0] = −A(1)
0 ,
2A(1)
0 = [C0, [C0,A(1)
2 ]], 2A(2)
0 = [C0, [C0,A(2)
2 ]] + 2[A(1)
2 , C0]. (3.4)
To solve the algebraic system (3.4) we need to calculate [24] the corresponding holonomy Lie
algebra of the connection (2.4). As a result of simple, but slightly cumbersome calculations,
we derive that elements A(j)
2 , j = 0, . . . , 2, and C0 belong to the Lie algebra sl(2; C), whose
basis L0, L+ and L− can be taken to satisfy the following canonical commutation relations:
[L0, L±] = ±L±, [L+, L−] = 2L0.
Thereby, making use of the standard determining expansions
A(j)
2 =
∑
±
c
(j)
± L± + c
(j)
0 L0, C0 =
∑
±
k±L± + k0L0, (3.5)
where j = 0, . . . , 2, and substituting (3.5) into (3.4), we obtain some relationships on values
c
(j)
± , c
(j)
0 ∈ C, j = 0, . . . , 2, and k±, k0 ∈ C. Resolving by means of simple but slightly cumber-
some calculations these relationships, we find the searched for basic elements A and B of the
connection Γ, depending on a spectral parameter λ ∈ C, thereby giving rise to the correspon-
ding Lax type commutative spectral representation for dynamical system (2.1) in the following
(2× 2)-matrix form:
df
dx
= `[u, v;λ]f,
df
dt
= p(`)f, p(`) := 2u`[u, v;λ] + q, (3.6)
`[u, v;λ] :=
(
−λux −vx
λ2 λux
)
, q :=
(
0 0
λ 0
)
, p(`) =
(
−2λuxu −2vxu
λ+ 2λ2u 2λuxu
)
,
defining the generalized time-independent spectrum Spec(`) ⊂ C: λ ∈ Spec(`), if the correspon-
ding solution f ∈ L∞(R; C2). It is worth to remark here that the Lax type representation (3.6),
found for the dynamical system (2.1), is not unique. Moreover, making use of other imbeddings
of the connection form (2.4) into a suitable holonomy Lie algebra G, one can construct different
Lax type representations, which could appear to be more useful for finding exact solutions to
dynamical system (2.1) by means of, for instance, the inverse spectral transform method.
The standard Riccati equation, derived from (3.6), allows to obtain right away an infinite
hierarchy of local conservation laws:
γ̂−1 :=
∫ 2π
0
√
u2
x − vxdx, γ̂0 :=
∫ 2π
0
(uxvxx − vxuxx)
2vx
√
u2
x − vx
dx, . . . , (3.7)
6 J. Golenia, M.V. Pavlov, Z. Popowicz and A.K. Prykarpatsky
and so on. All of conservation laws (3.7) except γ−1, are singular at the Cauchy condition (2.2).
This means that we need to construct other hierarchy of polynomial conservation laws regular
on the functional submanifold
Mred :=
{
(u, v) ∈M : u2
x − vx = 0, x ∈ R/2πZ
}
. (3.8)
The latter exists owing to the results of [23, 24]. The simplest way to search for them consists
in determining the bi-Hamiltonian structure of flow (2.1). As it is easy to check, dynamical
system (2.1) is canonically Hamiltonian, that is
d
dt
(u, v)ᵀ := −ϑ̂ grad Ĥϑ = K̂[u, v],
where the corresponding co-symplectic structure ϑ̂ : T ∗(M) → T (M) is canonical, equals
ϑ̂ =
(
0 1
−1 0
)
(3.9)
and satisfies the Noether equation
LK̂ ϑ̂ = 0 = dϑ̂/dt− ϑ̂K̂ ′,∗ − K̂ ′ϑ̂.
To prove this, it is enough to find by means of the small parameter method, devised before
in [24] a non-symmetric (ϕ′ 6= ϕ′,∗) solution ϕ ∈ T (M) to the following Lie–Lax equation:
dϕ/dt+ K̂ ′,∗ϕ = gradL (3.10)
for some suitably chosen smooth functional L ∈ D(M). As a result of easy calculations one
obtains that
ϕ = (−v, 0)ᵀ, L = −
∫ 2π
0
uvdx. (3.11)
Making use of (3.11) and the classical Legendrian relationship for the suitable Hamiltonian
function
H := (ϕ, K̂)− L, (3.12)
and the corresponding symplectic structure
ϑ̂−1 := ϕ′ − ϕ′,∗ =
(
0 −1
1 0
)
(3.13)
one obtains the implectic structure (3.9) and the corresponding non-singular Hamilton function
Ĥϑ :=
∫ 2π
0
(v2/2 + vxu
2)dx.
It is here worth to mention that the determining Lie–Lax equation (3.10) possesses still another
solution
ϕ =
(
ux
2
,− u2
x
2vx
)
, L =
1
4
∫ 2π
0
uvxdx,
giving rise, owing to formulas (3.13) and (3.12) to the new co-implectic (singular “symplectic”)
structure
η̂−1 := ϕ′ − ϕ′,∗ =
(
∂ −∂uxv
−1
x
−uxv
−1
x ∂ 1
2(u2
xv
−2
x ∂ + ∂u2
xv
−2
x )
)
(3.14)
On a Nonlocal Ostrovsky–Whitham Type Dynamical System 7
and the Hamiltonian functional
Ĥη :=
1
2
∫ 2π
0
(uvx − vux)dx.
The co-implectic structure (3.14) is, evidently, singular since η̂−1(ux, vx)ᵀ = 0. Remark also
that, owing to the general symplectic theory results [1, 8, 11, 15, 16, 18, 24] for nonlinear
dynamical systems on smooth functional manifolds, operator (3.14) defines on the manifold M
a closed differential two-form. Thereby it is a priori co-symplectic, satisfying on M the standard
Jacobi brackets condition. Moreover, the implectic structure η̂ : T ∗(M) → T ∗(M) satisfies the
determining Noether equation
LK̂ η̂ = 0 = dη̂/dt− η̂K̂ ′,∗ − K̂ ′η̂,
whose solutions can also be obtained by means of the small parameter method, devised before
in [16, 24]. As a result, the second implectic operator has the form
η̂ :=
(
∂−1 2ux∂
−1
2∂−1ux 2vx∂
−1 + 2∂−1vx
)
, (3.15)
giving rise to a new infinite hierarchy of polynomial conservation laws
γ̂n :=
∫ 1
0
dλ〈(ϑ̂−1η̂)ngrad Ĥϑ[uλ}, u〉 (3.16)
for all n ∈ Z+.
In particular, one can easily observe that there hold representations
d
dt
(u, v)ᵀ = −η̂ grad Ĥη,
d
dx
(u, v)ᵀ = −ϑ̂ grad Ĥη,
where
Ĥη :=
1
2
∫ 2π
0
(uvx − vux)dx.
Thereby, one can formulate the following proposition.
Proposition 1. The Riemann type hydrodynamical system (2.1) is a Lax type integrable bi-
Hamiltonian flow on the functional manifold M. The corresponding implectic pairs are compa-
tible and given by matrix operators (3.9) and (3.15), the Lax type representation is presented in
the differential matrix form (3.6).
Now, making use of (3.16), one can apply the standard reduction procedure upon the corre-
sponding finite dimensional functional subspaces M2n ⊂M, n ∈ Z+, and obtain a large set of
exact solutions of special quasi-periodic and solitonic type to dynamical system (2.1) upon the
functional submanifold Mred, if the Cauchy data are taken to satisfy constraint (3.8). Here we
need to mention that a general solution to the system (2.1), obtained in [23, 27], is presented in
an unwieldy involved form, almost completely not feasible for practical applications.
4 A Riemann type hydrodynamical generalization
It is here interesting to mention (owing to recent observations by D. Holm for N = 2 and for
arbitrary N ∈ Z+ by M. Pavlov) that the dynamical system (2.1) can be equivalently rewritten
up to the time rescaling as
D2
t u = 0, Dt := ∂/∂t+ u∂, (4.1)
8 J. Golenia, M.V. Pavlov, Z. Popowicz and A.K. Prykarpatsky
under the flow velocity condition dx/dt := u, which is a partial case [5] of the generalized
Riemann type hydrodynamic system
DN
t u = 0 (4.2)
for any integer N ∈ Z+. If N = 3, having defined the new variables v := Dtu, z := Dtv, one
easily obtains the new dynamical system
ut = v − uux
vt = z − uvx
zt = −uzx
:= K[u, v, z] (4.3)
of hydrodynamical type, which proves also to possess infinite hierarchies of polynomial conser-
vation laws.
As we are interested first in the conservation laws for the system (4.3), the following propo-
sition holds.
Proposition 2. Let H(λ) :=
∫ 2π
0 h(x;λ)dx ∈ D(M) be an almost everywhere smooth func-
tional on the manifold M, depending parametrically on λ ∈ C, and whose density satisfies the
differential condition
ht = λ(uh)x (4.4)
for all t ∈ R and λ ∈ C on the solution set of equation (4.1). Then the following iterative
differential relationship
(f/h)t = λ(uf/h)x (4.5)
holds, if a smooth function f ∈ C∞(R; R) (parametrically depending on λ ∈ C) satisfies for all
t ∈ R the linear equation
ft = 2λuxf + λufx. (4.6)
Proof. We have from (4.4)–(4.6) that
(f/h)t = ft/h− fht/h
2 = ft/h− λfux/h− λfuhx/h
2 = ft/h+ λfu(1/h)x − λuxf/h
= λ(uf)x/h+ λuf(1/h)x = λ(uf/h)x,
proving the proposition. �
The obvious generalization of the previous proposition is read as follows.
Proposition 3. If a smooth function h ∈ C∞(R; R) satisfies the relationships
ht = kuxh+ uhx,
where k ∈ R, then
H =
∫ 2π
0
h1/kdx
is a conservation law for the Riemann type hydrodynamical system (2.1).
On a Nonlocal Ostrovsky–Whitham Type Dynamical System 9
The following polynomial dispersionless functionals, constructed by means of Proposition 3,
are conserved with respect to the flow (4.3):
H(1)
n :=
∫ 2π
0
dxzn
(
vux − vxu−
n+ 2
n+ 1
z
)
,
H(4) :=
∫ 2π
0
dx
[
− 7vxv
2u+ z
(
6zu+ 2vxu
2 − 3v2 − 4vuux
)]
,
H(5) :=
∫ 2π
0
dx
(
z2ux − 2zvvx
)
, H(6) :=
∫ 2π
0
dx
(
zzv
3 + 3z2vxu+ z3
)
,
H(7) :=
∫ 2π
0
dx
(
zxv
3 + 3z2vux − 3z3
)
,
H(8) :=
∫ 2π
0
dxz
(
6z2u+ 3zvxu
2 − 3zv2 − 4zvux − 2vxv
2u+ 2v3ux
)
,
H(9) :=
∫ 2π
0
dx
[
1001vxv
4u+
(
1092z2u2 + 364zvxu
3−
− 1092zv2u− 728zvuxu
2 − 364vxv
2u2 + 273v4 + 728v3uxu
)]
,
H(2)
n :=
∫ 2π
0
dxzxvz
n, H(3)
n :=
∫ 2π
0
dxzx
(
v2 − 2zu
)n
,
where n ∈ Z+. In particular, as n = 1, 2, . . . , from (4.3) one obtains that
H
(2)
0 :=
∫ 2π
0
dxzxv, H
(2)
1 :=
∫ 2π
0
dxzxzv, . . . ,
H
(3)
1 :=
∫ 2π
0
dxzx
(
v2 − 2uz
)
, H
(3)
2 :=
∫ 2π
0
dxzx
(
v4 + 4z2u2 − 4zv2u
)
, . . . ,
and so on. Similarly one can construct also infinite hierarchies of conservation laws for the
hydrodynamical system (4.3), which are both non-polynomial and dispersive:
H
(1/4)
1 =
∫ 2π
0
dx
(
− 2uxxuxzx + uxxv
2
x + 2u2
xzxx − uxvxxvx + 3vxxzx − 3vxzxx
)1/4
,
H
(1/3)
2 =
∫ 2π
0
dx(−vxxzx + vxzxx)1/3,
H
(1/3)
3 =
∫ 2π
0
dx(vxxux − vxuxx − zxx)1/3,
H
(1/2)
1 =
∫ 2π
0
dx
[
− 2vuxzx + v2
x + z(−uxvx + 3zx)
]1/2
,
H
(1/2)
2 =
∫ 2π
0
dx
(
8u3
xzx − 3u2
xv
2
x − 18uxvxzx + 6v3
x + 9zx
)1/2
,
H
(1/5)
1 =
∫ 2π
0
dx
(
− 2uxxxuxzx + uxxxv
2
x + 6u2
xxzx − 6uxxuxzxx
− 3uxxvxxvx + 2u2
xzxxx − uxvxxxvx + 3uxv
2
xx + 3vxxxzx − 3vxzxxx
)1/5
,
H
(1/3)
3 =
∫ 2π
0
dx
[
k1u(−vxxzx + vxzxx) + k1v(uxxzx − uxzxx)
+ z(k2uxxvx − k2uxvxx + k1zxx + k2zxx) + k3(−3uxvxzx + v3
x + 3z2
x)
]1/3
, . . . ,
and so on, where kj ∈ R, j = 1, 2, 3, are arbitrary real numbers. The problem which remains still
open consists in proving, if any, that the generalized hydrodynamical system (4.3) is a Lax type
10 J. Golenia, M.V. Pavlov, Z. Popowicz and A.K. Prykarpatsky
integrable bi-Hamiltonian flow on the periodic functional manifold M := C(∞)(R/2πZ; R3), as
it was proved above for the system (4.2) at N = 2. This problem will be analyzed in the Section
below.
5 The Hamiltonian analysis
Consider the system (4.3) as a nonlinear dynamical system
ut = v − uux
vt = z − uvx
zt = −uzx
:= K[u, v, z], (5.1)
on the 2π-periodic smooth functional manifold M and analyze it from the Hamiltonian point
of view. To tackle with this problem, it is enough to construct [7, 11, 24] exact non-symmetric
solutions to the Lie–Lax equation
dϕ/dt+K ′,∗ϕ = gradL, ϕ′ 6= ϕ′,∗, (5.2)
for some functional L ∈ D(M), where ϕ ∈ T ∗(M) is, in general, a quasi-local vector, such that
the system (4.3) allows the following Hamiltonian representation:
K[u, v, z] = −η gradH[u, v, z], H = (ϕ,K)− L, η−1 = ϕ′ − ϕ′,∗.
As a test solution to (5.2) one can take the one
ϕ =
(
ux/2, 0,−z−1
x u2
x/2 + z−1
x vx
)ᵀ
, L =
1
2
∫ 2π
0
(2z + vux)dx,
which gives rise to the following co-implectic operator:
η−1 := ϕ′ − ϕ′,∗ =
∂ 0 −∂uxz
−1
x
0 0 ∂zx
−uxz
−1
x ∂ zx∂
1
2(u2
xz
−2
x ∂ + ∂u2
xz
−2
x )
− (vxz
−2
x ∂ + ∂vxz
−2
x )
. (5.3)
This expression is not strictly invertible, as its kernel possesses the translation vector field
d/dx : M→ T (M) with components (ux, vx, zx)ᵀ ∈ T (M), that is η−1(ux, vx, zx)ᵀ = 0.
Nonetheless, upon formal inverting the operator expression (5.3), we obtain by means of
simple enough, but slightly cumbersome, direct calculations, that the Hamiltonian function
equals
H :=
∫ 2π
0
dx(uxv − z). (5.4)
and the implectic η-operator looks as
η :=
∂−1 ux∂
−1 0
∂−1ux vx∂
−1 + ∂−1vx ∂−1zx
0 zx∂
−1 0
. (5.5)
The same way, representing the Hamiltonian function (5.4) in the scalar form
H = (ψ, (ux, vx, zx)ᵀ), ψ =
1
2
(
−v, u+ · · · ,− 1√
z
∂−1√z
)ᵀ
, (5.6)
On a Nonlocal Ostrovsky–Whitham Type Dynamical System 11
one can construct a second implectic (co-symplectic) operator ϑ : T ∗(M) → T (M), looking up
to O(µ2) terms, as follows:
ϑ =
µ
(
(u(1))2
z(1) ∂ + ∂ (u(1))2
z(1)
) 1 + 2µ
3
(
u(1)v(1)
z(1) ∂
+ 2∂ u(1)v(1)
z(1)
) 2µ
3
(
∂ (v(1))2
z(1) + ∂u(1)
)
−1 + 2µ
3
(
∂ u(1)v(1)
z(1)
+ 2u(1)v(1)
z(1) ∂
) 2µ
3
(
(v(1))2
z(1) ∂ + ∂ (v(1))2
z(1)
)
+ 2µ
3
(
u(1)∂ + ∂u(1)
) 2µ∂v(1)
2µ
3
(
(v(1))2
z(1) ∂ + u(1)∂
)
2µv(1)∂ µ
(
∂z(1) + z(1)∂
)
+O(µ2), (5.7)
where we put, by definition, ϑ−1 := (ψ′ − ψ′,∗), u := µu(1), v := µv(1), z := µz(1) as µ→ 0, and
whose exact form needs some additional simple enough but cumbersome calculations, which will
be presented in a work under preparation.
The operator (5.7) satisfies the Hamiltonian vector field condition:
(ux, vx, zx)ᵀ = −ϑ gradH,
following easily from (5.6).
Now having applied to the pair of implectic operators the gradient-holonomic scheme [11,
16, 24] of constructing a Lax type representation for the dynamical system (5.1) we obtain
by means of slightly cumbersome and tedious calculations the following compatible Lax type
representation:
fx = `[u, v;λ]f, ft = p(`)f, p(`) := −u`[u, v;λ] + q(λ),
`[u, v, z;λ =
λux −vx zx
3λ2 −2λux λvx
λ2r[u, v, z] −3λ λux
, q(λ) :=
0 0 0
λ 0 0
0 1 0
,
p(`) =
−λuux uvx −uzx
−3uλ2 + λ 2λuux −λuvx
−λ2r[u, v, z]u 1 + 3uλ −λuux
, (5.8)
where f ∈ C∞(R; C3), λ ∈ C\{0} is a spectral parameter and r : M→ R is a smooth mapping,
satisfying the differential equation
Dtr + uxr = 6.
The latter possesses a wide set R of different solutions, amongst which there are the following:
r ∈ R :=
{[(
6xv − 3u2
)
/z
]
x
, 3
(
2vx − u2
x
)
z−1
x ,
2u3
x − 6uxvx + 9zx
2uxzx − v2
x
,
(
vxv
3 − 3uxv
2z + uzx
(
uz − v2
)
+ 6vz2
)
z−3
}
. (5.9)
Thereby, the following proposition holds.
Proposition 4. The generalized Riemann type hydrodynamical equation (4.2) at N = 2 and
N = 3 is equivalent to Lax type integrable bi-Hamiltonian dynamical systems (2.1) and (5.1),
whose Hamiltonian structures and Lax type representations are given by expressions (3.13),
(3.15), (3.6), and (5.5), (5.7), (5.8), (5.9), respectively.
12 J. Golenia, M.V. Pavlov, Z. Popowicz and A.K. Prykarpatsky
Note here that only the third element from the set (5.9) allows the reduction z = 0 to the
case N = 2. Concerning the case N = 4 and the general case N ∈ Z+, applying successively the
method devised above, one can obtain [3] for the Riemann type hydrodynamical system (5.1)
both infinite hierarchies of dispersive and dispersionless conservation laws, their symplectic
structures and the related Lax type representations, which is a topic of the next work under
preparation.
Acknowledgments
M.P. and A.P. are appreciated to Organizers of the Symmetry-2009 Conference (June 21–27,
2009) held in Kyiv, Ukraine, and the NEEDS-2009 Conference (May 15–23, 2009), held in Isola
Rossa of Sardinia, Italy, for the invitations to deliver reports and for a partial support. M.P.
was, in part, supported by RFBR grant 08-01-00054 and a grant of the RAS Presidium “Fun-
damental Problems of Nonlinear Dynamics”. The authors thanks go to Professors M. B laszak,
N. Bogolubov (jr.) and D. Blackmore for useful discussions of the results obtained. Authors are
also cordially thankful to Referees who have read the article and made very important remarks
and suggestions, which were very instrumental for final preparing a manuscript, and which made
it possible both to improve and correct the exposition.
References
[1] B laszak M., Multi-Hamiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-
Verlag, Berlin, 1998.
[2] Bogolyubov N.N. Jr., Prykarpatsky A.K., Gucwa I., Golenia J., Analytical properties of an Ostrovsky–
Whitham type dynamical system for a relaxing medium with spatial memory and its integrable regulariza-
tion, Preprint IC/2007/109, Trieste, Italy, 2007, arXiv:0902.4395.
[3] Bogolyubov N.N. Jr., Golenia J., Popowicz Z., Pavlov M.V., Prykarpatsky A.K., A new Riemann type
hydrodynamical hierarchy and its integrability analysis, Preprint IC/2009/095, Trieste, Italy, 2009.
[4] Brunelli J.C., Das A., On an integrable hierarchy derived from the isentropic gas dynamics, J. Math. Phys.
45 (2004), 2633–2645, nlin.SI/0401009.
[5] Chorin A.J., Marsden J.E., A mathematical introduction to fluid mechanics, 3rd ed., Texts in Applied
Mathematics, Vol. 4, Springer-Verlag, New York, 1993.
[6] Davidson R.C., Methods in nonlinear plasma theory, Academic Press, New York, 1972.
[7] Faddeev L.D., Takhtajian L.A., Hamiltonian methods in the theory of solitons, Classics in Mathematics,
Springer, Berlin, 2007.
[8] Fuchssteiner B., Fokas A.S., Symplectic structures, their Bäcklund transformations and hereditary symme-
tries, Phys. D 4 (1981), 47–66.
[9] Gurevich A.V., Zybin K.P., Nondissipative gravitational turbulence, Soviet Phys. JETP 67 (1988), 1–12.
[10] Gurevich A.V., Zybin K.P., Large-scale structure of the Universe. Analytic theory, Soviet Phys. Usp. 38
(1995), 687–722.
[11] Hentosh O., Prytula M., Prykarpatsky A., Differential-geometric and Lie-algebraic foundations of inves-
tigating nonlinear dynamical systems on functional manifolds, 2nd ed., Lviv University Publ., 2006 (in
Ukrainian).
[12] Hunter J.K., Saxton R., Dynamics of director fields, SIAM J. Appl. Math. 51 (1991), 1498–1521.
[13] Hunter J.K., Zheng Y.X., On a completely integrable nonlinear hyperbolic variational equation, Phys. D 79
(1994), 361–386.
[14] Lenells J., The Hunter–Saxton equation: a geometric approach, SIAM J. Math. Anal. 40 (2008), 266–277.
[15] Magri F., A simple model of the integrable Hamiltonian equations, J. Math. Phys. 19 (1978), 1156–1162.
[16] Mitropol’skij Yu.A., Bogolyubov N.N. Jr., Prikarpatskij A.K., Samojlenko V.G., Integrable dynamical sys-
tems: spectral and differential-geometric aspects, Naukova Dumka, Kiev, 1987 (in Russian).
http://arxiv.org/abs/0902.4395
http://dx.doi.org/10.1063/1.1756699
http://arxiv.org/abs/nlin.SI/0401009
http://dx.doi.org/10.1016/0167-2789(81)90004-X
http://dx.doi.org/10.1137/0151075
http://dx.doi.org/10.1016/0167-2789(94)90093-0
http://dx.doi.org/10.1137/050647451
http://dx.doi.org/10.1063/1.523777
On a Nonlocal Ostrovsky–Whitham Type Dynamical System 13
[17] Morrison A.J., Parkes E.J., Vakhnenko V.O., The N loop soliton solution of the Vakhnenko equation,
Nonlinearity 12 (1999), 1427–1437.
[18] Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Vol. 107,
Springer-Verlag, New York, 1986.
[19] Olver P.J., Rosenau P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact
support, Phys. Rev. E 53 (1996), 1900–1906.
[20] Ostrovsky L.A., Nonlinear internal waves in a rotating ocean, Oceanology 18 (1978), 119–125.
[21] Parkes E.J., The stability of solution of Vakhnenko’s equation, J. Phys. A: Math. Gen. 26 (1993), 6469–6475.
[22] Parkes E.J., Vakhnenko V.O., Explicit solutions of the Camassa–Holm equation, Chaos Solitons Fractals
26 (2005), 1309–1316.
[23] Pavlov M.V., The Gurevich–Zybin system, J. Phys. A: Math. Gen. 38 (2005), 3823–3840, nlin.SI/0412072.
[24] Prykarpatsky A.K., Mykytyuk I.V., Algebraic integrability of nonlinear dynamical systems on manifolds.
Classical and quantum aspects, Mathematics and its Applications, Vol. 443, Kluwer Academic Publishers
Group, Dordrecht, 1998.
[25] Prykarpatsky A.K., Prytula M.M., The gradient-holonomic integrability analysis of a Whitham-type non-
linear dynamical model for a relaxing medium with spatial memory, Nonlinearity 19 (2006), 2115–2122.
[26] Prykarpatsky A.K., Prytula M.M., The gradient-holonomic analysis of the integrability of a nonlinear
Whitham-type model for a relaxing medium with memory, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn.
Tekh. Nauki (2006), no. 5, 13–18 (in Ukrainian).
[27] Sakovich S., On a Whitham-type equation, SIGMA 5 (2009), 101, 7 pages, arXiv:0909.4455.
[28] Whitham G.B., Linear and nonlinear waves, Wiley-Interscience, New York – London – Sydney, 1974.
http://dx.doi.org/10.1088/0951-7715/12/5/314
http://dx.doi.org/10.1103/PhysRevE.53.1900
http://dx.doi.org/10.1088/0305-4470/26/22/040
http://dx.doi.org/10.1016/j.chaos.2005.03.011
http://dx.doi.org/10.1088/0305-4470/38/17/008
http://arxiv.org/abs/nlin.SI/0412072
http://dx.doi.org/10.1088/0951-7715/19/9/007
http://dx.doi.org/10.3842/SIGMA.2009.101
http://arxiv.org/abs/0909.4455
1 Introduction
2 A regularization scheme and the geometric integrability problem
3 The bi-Hamiltonian structure and Lax-type representation
4 A Riemann type hydrodynamical generalization
5 The Hamiltonian analysis
References
|