Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
We study Archimedean atomic lattice effect algebras whose set of sharp elements is a complete lattice. We show properties of centers, compatibility centers and central atoms of such lattice effect algebras. Moreover, we prove that if such effect algebra E is separable and modular then there exists a...
Saved in:
Date: | 2010 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2010
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146094 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements / Z. Riecanová // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | We study Archimedean atomic lattice effect algebras whose set of sharp elements is a complete lattice. We show properties of centers, compatibility centers and central atoms of such lattice effect algebras. Moreover, we prove that if such effect algebra E is separable and modular then there exists a faithful state on E. Further, if an atomic lattice effect algebra is densely embeddable into a complete lattice effect algebra ^E and the compatiblity center of E is not a Boolean algebra then there exists an (o)-continuous subadditive state on E. |
---|