Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
Together with spaces of constant sectional curvature and products of a real line with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least 0.5n(n − 1) + 1, for almost a...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2010
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146096 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups / E. García-Río // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Together with spaces of constant sectional curvature and products of a real line
with a manifold of constant curvature, the socalled Egorov spaces and ε-spaces exhaust the class of n-dimensional Lorentzian manifolds admitting a group of isometries of dimension at least 0.5n(n − 1) + 1, for almost all values of n [Patrangenaru V., Geom. Dedicata 102 (2003), 25–33]. We shall prove that the curvature tensor of these spaces satisfi several interesting algebraic properties. In particular, we will show that Egorov spaces are Ivanov–Petrova manifolds, curvature-Ricci commuting (indeed, semi-symmetric) and P-spaces, and that ε-spaces are Ivanov–Petrova and curvature-curvature commuting manifolds. |
---|