Quantum Isometry Group for Spectral Triples with Real Structure
Given a spectral triple of compact type with a real structure in the sense of [Dabrowski L., J. Geom. Phys. 56 (2006), 86-107] (which is a modification of Connes' original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always...
Gespeichert in:
Datum: | 2010 |
---|---|
1. Verfasser: | Goswami, D. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2010
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146117 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Quantum Isometry Group for Spectral Triples with Real Structure / D. Goswami // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles
von: Goswami, D., et al.
Veröffentlicht: (2014) -
Derivations and Spectral Triples on Quantum Domains I: Quantum Disk
von: Klimek, S., et al.
Veröffentlicht: (2017) -
On the Group of Foliation Isometries
von: Narmanov, A.Yu., et al.
Veröffentlicht: (2009) -
Isometry of the subspaces of solutions of systems of differential equations to the spaces of real functions
von: F. H. Abdullaiev, et al.
Veröffentlicht: (2019) -
On representations of permutations groups as isometry groups of n-semimetric spaces
von: O. Gerdiy, et al.
Veröffentlicht: (2015)