Q-system Cluster Algebras, Paths and Total Positivity

In the first part of this paper, we provide a concise review of our method of solution of the Ar Q-systems in terms of the partition function of paths on a weighted graph. In the second part, we show that it is possible to modify the graphs and transfer matrices so as to provide an explicit connecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: di Francesko, P., Kedem, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146152
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Q-system Cluster Algebras, Paths and Total Positivity / P. di Francesco, R. Kedem // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In the first part of this paper, we provide a concise review of our method of solution of the Ar Q-systems in terms of the partition function of paths on a weighted graph. In the second part, we show that it is possible to modify the graphs and transfer matrices so as to provide an explicit connection to the theory of planar networks introduced in the context of totally positive matrices by Fomin and Zelevinsky. As an illustration of the further generality of our method, we apply it to give a simple solution for the rank 2 affine cluster algebras studied by Caldero and Zelevinsky.