On Transitive Systems of Subspaces in a Hilbert Space
Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5.
Gespeichert in:
Datum: | 2006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2006
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146166 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146166 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1461662019-02-08T01:24:17Z On Transitive Systems of Subspaces in a Hilbert Space Moskaleva, Y.P. Samoilenko, Y.S. Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5. 2006 Article On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 47A62; 16G20 http://dspace.nbuv.gov.ua/handle/123456789/146166 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Methods of *-representations in Hilbert space are applied to study of systems of n subspaces in a linear space. It is proved that the problem of description of n-transitive subspaces in a finite-dimensional linear space is *-wild for n ≥ 5. |
format |
Article |
author |
Moskaleva, Y.P. Samoilenko, Y.S. |
spellingShingle |
Moskaleva, Y.P. Samoilenko, Y.S. On Transitive Systems of Subspaces in a Hilbert Space Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Moskaleva, Y.P. Samoilenko, Y.S. |
author_sort |
Moskaleva, Y.P. |
title |
On Transitive Systems of Subspaces in a Hilbert Space |
title_short |
On Transitive Systems of Subspaces in a Hilbert Space |
title_full |
On Transitive Systems of Subspaces in a Hilbert Space |
title_fullStr |
On Transitive Systems of Subspaces in a Hilbert Space |
title_full_unstemmed |
On Transitive Systems of Subspaces in a Hilbert Space |
title_sort |
on transitive systems of subspaces in a hilbert space |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146166 |
citation_txt |
On Transitive Systems of Subspaces in a Hilbert Space / Y.P. Moskaleva, Y.S. Samoilenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 12 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT moskalevayp ontransitivesystemsofsubspacesinahilbertspace AT samoilenkoys ontransitivesystemsofsubspacesinahilbertspace |
first_indexed |
2025-07-10T23:20:14Z |
last_indexed |
2025-07-10T23:20:14Z |
_version_ |
1837303977940615168 |