Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation

We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively.

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Guha, P., Olver, P.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146168
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively.