Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively.
Gespeichert in:
Datum: | 2006 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2006
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146168 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146168 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1461682019-02-08T01:23:01Z Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation Guha, P. Olver, P.J. We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively. 2006 Article Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53A07; 53B50 http://dspace.nbuv.gov.ua/handle/123456789/146168 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively. |
format |
Article |
author |
Guha, P. Olver, P.J. |
spellingShingle |
Guha, P. Olver, P.J. Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Guha, P. Olver, P.J. |
author_sort |
Guha, P. |
title |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
title_short |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
title_full |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
title_fullStr |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
title_full_unstemmed |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation |
title_sort |
geodesic flow and two (super) component analog of the camassa-holm equation |
publisher |
Інститут математики НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146168 |
citation_txt |
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT guhap geodesicflowandtwosupercomponentanalogofthecamassaholmequation AT olverpj geodesicflowandtwosupercomponentanalogofthecamassaholmequation |
first_indexed |
2025-07-10T23:20:25Z |
last_indexed |
2025-07-10T23:20:25Z |
_version_ |
1837303989574565888 |