Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation

We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively.

Gespeichert in:
Bibliographische Detailangaben
Datum:2006
Hauptverfasser: Guha, P., Olver, P.J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2006
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146168
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146168
record_format dspace
fulltext
spelling irk-123456789-1461682019-02-08T01:23:01Z Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation Guha, P. Olver, P.J. We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively. 2006 Article Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53A07; 53B50 http://dspace.nbuv.gov.ua/handle/123456789/146168 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We derive the 2-component Camassa-Holm equation and corresponding N = 1 super generalization as geodesic flows with respect to the H1 metric on the extended Bott-Virasoro and superconformal groups, respectively.
format Article
author Guha, P.
Olver, P.J.
spellingShingle Guha, P.
Olver, P.J.
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Guha, P.
Olver, P.J.
author_sort Guha, P.
title Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
title_short Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
title_full Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
title_fullStr Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
title_full_unstemmed Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
title_sort geodesic flow and two (super) component analog of the camassa-holm equation
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146168
citation_txt Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation / P. Guha, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 26 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT guhap geodesicflowandtwosupercomponentanalogofthecamassaholmequation
AT olverpj geodesicflowandtwosupercomponentanalogofthecamassaholmequation
first_indexed 2025-07-10T23:20:25Z
last_indexed 2025-07-10T23:20:25Z
_version_ 1837303989574565888