Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations

In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Gerdt, V.P., Blinkov, Y.A., Mozzhilkin, V.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146172
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146172
record_format dspace
fulltext
spelling irk-123456789-1461722019-02-08T01:23:02Z Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations Gerdt, V.P. Blinkov, Y.A. Mozzhilkin, V.V. In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gröbner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gröbner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties. 2006 Article Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations / V.P. Gerdt, Y.A. Blinkov, V.V. Mozzhilkin// Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 50 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 68W30; 65M06; 13P10; 39A05; 65Q05 http://dspace.nbuv.gov.ua/handle/123456789/146172 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gröbner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gröbner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.
format Article
author Gerdt, V.P.
Blinkov, Y.A.
Mozzhilkin, V.V.
spellingShingle Gerdt, V.P.
Blinkov, Y.A.
Mozzhilkin, V.V.
Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gerdt, V.P.
Blinkov, Y.A.
Mozzhilkin, V.V.
author_sort Gerdt, V.P.
title Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
title_short Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
title_full Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
title_fullStr Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
title_full_unstemmed Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
title_sort gröbner bases and generation of difference schemes for partial differential equations
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146172
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gerdtvp grobnerbasesandgenerationofdifferenceschemesforpartialdifferentialequations
AT blinkovya grobnerbasesandgenerationofdifferenceschemesforpartialdifferentialequations
AT mozzhilkinvv grobnerbasesandgenerationofdifferenceschemesforpartialdifferentialequations
first_indexed 2025-07-10T23:20:48Z
last_indexed 2025-07-10T23:20:48Z
_version_ 1837304013119291392