Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions a...
Gespeichert in:
Datum: | 2006 |
---|---|
Hauptverfasser: | Gerdt, V.P., Blinkov, Y.A., Mozzhilkin, V.V. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2006
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146172 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Nonlocal Symmetries and Generation of Solutions for Partial Differential Equations
von: Tychynin, V., et al.
Veröffentlicht: (2007) -
Methods to construct the exact difference scheme for a differential equation of order 4
von: V. G. Prikazchikov
Veröffentlicht: (2017) -
Solving of Partial Differential Equations under Minimal Conditions
von: Maslyuchenko, V.K., et al.
Veröffentlicht: (2008) -
Finite-difference approximation of first-order partial differential-functional equations
von: Kamont, Z.
Veröffentlicht: (1994) -
Implicit difference methods for first order partial differential functional equations
von: Kepczynska, A.
Veröffentlicht: (2005)