Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type

The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of non-stretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted by the Lie groups G = SO(N+1),SU(N). The derivati...

Full description

Saved in:
Bibliographic Details
Date:2006
Main Author: Anco, S.C.
Format: Article
Language:English
Published: Інститут математики НАН України 2006
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/146182
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type / S.C. Anco // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of non-stretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted by the Lie groups G = SO(N+1),SU(N). The derivation of the bi-Hamiltonian structure uses a parallel frame and connection along the curve, tied to a zero curvature Maurer-Cartan form on G, and this yields the mKdV recursion operators in a geometric vectorial form. The kernel of these recursion operators is shown to yield two hyperbolic vector generalizations of the sine-Gordon equation. The corresponding geometric curve flows in the hierarchies are described in an explicit form, given by wave map equations and mKdV analogs of Schrödinger map equations.