Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras

In this paper we introduce a basic representation for the confluent Cherednik algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Mazzocco, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146185
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146185
record_format dspace
fulltext
spelling irk-123456789-1461852019-02-09T01:23:27Z Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras Mazzocco, M. In this paper we introduce a basic representation for the confluent Cherednik algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big q-Hermite and continuous q-Hermite polynomials. 2014 Article Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D80; 33D52; 16T99 http://dspace.nbuv.gov.ua/handle/123456789/146185 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we introduce a basic representation for the confluent Cherednik algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big q-Hermite and continuous q-Hermite polynomials.
format Article
author Mazzocco, M.
spellingShingle Mazzocco, M.
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Mazzocco, M.
author_sort Mazzocco, M.
title Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_short Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_full Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_fullStr Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_full_unstemmed Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
title_sort non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146185
citation_txt Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT mazzoccom nonsymmetricbasichypergeometricpolynomialsandrepresentationtheoryforconfluentcherednikalgebras
first_indexed 2025-07-10T23:22:00Z
last_indexed 2025-07-10T23:22:00Z
_version_ 1837304089034096640