Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras
In this paper we introduce a basic representation for the confluent Cherednik algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146185 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146185 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1461852019-02-09T01:23:27Z Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras Mazzocco, M. In this paper we introduce a basic representation for the confluent Cherednik algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big q-Hermite and continuous q-Hermite polynomials. 2014 Article Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D80; 33D52; 16T99 http://dspace.nbuv.gov.ua/handle/123456789/146185 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we introduce a basic representation for the confluent Cherednik
algebras HV, HIII, HD7III and HD8III defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual q-Hahn, Al-Salam{Chihara, continuous big q-Hermite and continuous q-Hermite polynomials. |
format |
Article |
author |
Mazzocco, M. |
spellingShingle |
Mazzocco, M. Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Mazzocco, M. |
author_sort |
Mazzocco, M. |
title |
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras |
title_short |
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras |
title_full |
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras |
title_fullStr |
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras |
title_full_unstemmed |
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras |
title_sort |
non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146185 |
citation_txt |
Non-symmetric basic hypergeometric polynomials and representation theory for confluent cherednik algebras / M. Mazzoco // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 7 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT mazzoccom nonsymmetricbasichypergeometricpolynomialsandrepresentationtheoryforconfluentcherednikalgebras |
first_indexed |
2025-07-10T23:22:00Z |
last_indexed |
2025-07-10T23:22:00Z |
_version_ |
1837304089034096640 |