Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory

The algebraic structure and the spectral properties of a special class of multi-component NLS equations, related to the symmetric spaces of BD.I-type are analyzed. The focus of the study is on the spectral theory of the relevant Lax operators for different fundamental representations of the underlyi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Gerdjikov, V.S., Grahovski, G.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146305
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory / V.S. Gerdjikov, G.G. Grahovski // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 50 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The algebraic structure and the spectral properties of a special class of multi-component NLS equations, related to the symmetric spaces of BD.I-type are analyzed. The focus of the study is on the spectral theory of the relevant Lax operators for different fundamental representations of the underlying simple Lie algebra g. Special attention is paid to the structure of the dressing factors in spinor representation of the orthogonal simple Lie algebras of Br ≅ so(2r+1,C) type.