The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation

We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger equation in an even number of space dimensions. With rather weak conditions on the degree of nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution, and also has so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Durhuus, B., Gayral, V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146317
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation / B. Durhuus, V. Gayral // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger equation in an even number of space dimensions. With rather weak conditions on the degree of nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution, and also has solitary wave solutions if the interaction potential is suitably chosen. We demonstrate how to set up a scattering framework for equations of this type, including appropriate decay estimates of the free time evolution and the construction of wave operators defined for small scattering data in the general case and for arbitrary scattering data in the rotationally symmetric case.