Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves

We develop the theory of Abelian functions associated with cyclic trigonal curves by considering two new cases. We investigate curves of genus six and seven and consider whether it is the trigonal nature or the genus which dictates certain areas of the theory. We present solutions to the Jacobi inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
1. Verfasser: England, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146320
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves / M. England // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146320
record_format dspace
fulltext
spelling irk-123456789-1463202019-02-09T01:23:17Z Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves England, M. We develop the theory of Abelian functions associated with cyclic trigonal curves by considering two new cases. We investigate curves of genus six and seven and consider whether it is the trigonal nature or the genus which dictates certain areas of the theory. We present solutions to the Jacobi inversion problem, sets of relations between the Abelian function, links to the Boussinesq equation and a new addition formula. 2010 Article Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves / M. England // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33E05; 14H40; 14H42 DOI:10.3842/SIGMA.2010.025 http://dspace.nbuv.gov.ua/handle/123456789/146320 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We develop the theory of Abelian functions associated with cyclic trigonal curves by considering two new cases. We investigate curves of genus six and seven and consider whether it is the trigonal nature or the genus which dictates certain areas of the theory. We present solutions to the Jacobi inversion problem, sets of relations between the Abelian function, links to the Boussinesq equation and a new addition formula.
format Article
author England, M.
spellingShingle England, M.
Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
Symmetry, Integrability and Geometry: Methods and Applications
author_facet England, M.
author_sort England, M.
title Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
title_short Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
title_full Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
title_fullStr Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
title_full_unstemmed Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
title_sort higher genus abelian functions associated with cyclic trigonal curves
publisher Інститут математики НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/146320
citation_txt Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves / M. England // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 15 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT englandm highergenusabelianfunctionsassociatedwithcyclictrigonalcurves
first_indexed 2025-07-10T23:28:54Z
last_indexed 2025-07-10T23:28:54Z
_version_ 1837304523343790080