The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces

The Hamiltonian representation for the hierarchy of Lax-type flows on a dual space to the Lie algebra of shift operators coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is found by means of a specially constructed Bäcklund transformation. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
1. Verfasser: Hentosh, O.Ye.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146352
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Lax Integrable Differential-Difference Dynamical Systems on Extended Phase Spaces / O.Ye. Hentosh // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 45 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The Hamiltonian representation for the hierarchy of Lax-type flows on a dual space to the Lie algebra of shift operators coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is found by means of a specially constructed Bäcklund transformation. The Hamiltonian description for the corresponding set of squared eigenfunction symmetry hierarchies is represented. The relation of these hierarchies with Lax integrable (2+1)-dimensional differential-difference systems and their triple Lax-type linearizations is analysed. The existence problem of a Hamiltonian representation for the coupled Lax-type hierarchy on a dual space to the central extension of the shift operator Lie algebra is solved also.