A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions

This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotationa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Bezubik, A., Strasburger, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146431
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions / A. Bezubik, A. Strasburger // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146431
record_format dspace
spelling irk-123456789-1464312019-02-10T01:23:34Z A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions Bezubik, A. Strasburger, A. This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained. 2006 Article A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions / A. Bezubik, A. Strasburger // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33C55; 42B10; 33C80; 44A15; 44A20 http://dspace.nbuv.gov.ua/handle/123456789/146431 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper presents recent results obtained by the authors (partly in collaboration with A. Dabrowska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained.
format Article
author Bezubik, A.
Strasburger, A.
spellingShingle Bezubik, A.
Strasburger, A.
A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bezubik, A.
Strasburger, A.
author_sort Bezubik, A.
title A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_short A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_full A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_fullStr A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_full_unstemmed A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions
title_sort new form of the spherical expansion of zonal functions and fourier transforms of so(d)-finite functions
publisher Інститут математики НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/146431
citation_txt A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions / A. Bezubik, A. Strasburger // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bezubika anewformofthesphericalexpansionofzonalfunctionsandfouriertransformsofsodfinitefunctions
AT strasburgera anewformofthesphericalexpansionofzonalfunctionsandfouriertransformsofsodfinitefunctions
AT bezubika newformofthesphericalexpansionofzonalfunctionsandfouriertransformsofsodfinitefunctions
AT strasburgera newformofthesphericalexpansionofzonalfunctionsandfouriertransformsofsodfinitefunctions
first_indexed 2025-07-10T23:32:50Z
last_indexed 2025-07-10T23:32:50Z
_version_ 1837304800996229120
fulltext Symmetry, Integrability and Geometry: Methods and Applications Vol. 2 (2006), Paper 033, 8 pages A New Form of the Spherical Expansion of Zonal Functions and Fourier Transforms of SO(d)-Finite Functions Agata BEZUBIK † and Aleksander STRASBURGER ‡ † Institute of Mathematics, University of Bia lystok, Akademicka 2, 15-267 Bia lystok, Poland E-mail: agatab@math.uwb.edu.pl ‡ Department of Econometrics and Informatics, Warsaw Agricultural University, Nowoursynowska 166, 02-787 Warszawa, Poland E-mail: strasburger@alpha.sggw.waw.pl Received November 30, 2005, in final form February 17, 2006; Published online March 03, 2006 Original article is available at http://www.emis.de/journals/SIGMA/2006/Paper033/ Abstract. This paper presents recent results obtained by the authors (partly in collabo- ration with A. Da̧browska) concerning expansions of zonal functions on Euclidean spheres into spherical harmonics and some applications of such expansions for problems involving Fourier transforms of functions with rotational symmetry. The method used to derive the expansion formula is based entirely on differential methods and completely avoids the use of various integral identities commonly used in this context. Some new identities for the Fourier transform are derived and as a byproduct seemingly new recurrence relations for the classical Bessel functions are obtained. Key words: spherical harmonics; zonal harmonic polynomials; Fourier–Laplace expansions; special orthogonal group; Bessel functions; Fourier transform; Bochner identity 2000 Mathematics Subject Classification: 33C55; 42B10; 33C80; 44A15; 44A20 This paper is dedicated to Professor Jacques Faraut on the occasion of his 65-th anniversary. 1 Introduction and preliminaries on spherical harmonics Many parts of analysis on Euclidean spaces and in particular the theory of spherical harmonics provide an elegant and instructive application of group theoretical concepts to various questions of classical function theory. It suffices to mention points like: coincidence of eigenspaces of spherical Laplacian with irreducible components with respect to the natural action of the group SO(d) within the L2 space on the sphere; the role of classical orthogonal polynomials, i.e. Gegenbauer polynomials, as reproducing kernels for the spaces of spherical harmonics of a given degree, or more generally, as providing an explicit construction of symmetry adapted basis functions for those spaces (cf. [12]), or the connection of the Fourier transform on the Euclidean space to the Hankel transform obtained via restriction to SO(d)-finite functions and various integral identities of the Hecke–Bochner type resulting there from. The goal of the present paper is to present under one cover recent developments within this circle of ideas, obtained in [11, 2, 3] by the present authors, partly in collaboration with A. Da̧browska. The central point of this paper is a novel form of spherical expansion of zonal functions on Euclidean spheres which we derive by purely differential methods. We show how it implies certain general formulae for the Fourier transform of SO(d)-finite functions, including mailto:agatab@math.uwb.edu.pl mailto:strasburger@alpha.sggw.waw.pl http://www.emis.de/journals/SIGMA/2006/Paper033/ 2 A. Bezubik and A. Strasburger recent generalizations of the famous Bochner formula and also derive certain function theoretic consequences. 1.1 Preliminaries and notations We denote by (x | y) the standard (Euclidean) inner product of points x, y ∈ Rd and by r = |x| = (x |x)1/2 the corresponding length (or radius) function. The unit sphere in Rd is denoted by Sd−1 and for x 6= 0 we shall often write x = rξ with ξ ∈ Sd−1. We shall assume d ≥ 3 and frequently use a constant α defined by α = (d− 2)/2. The sphere is regarded as a homogeneous space of the group K = SO(d) of (proper) rotations in Rd and for a point η ∈ Sd−1 its isotropy group Kη ⊂ K can be identified with the group SO(d− 1). Let ∆ = d∑ j=1 ∂2/∂x2 j denote the Laplacian in Rd. We let P l = P l(Rd) denote the space consisting of homogeneous polynomials of degree l on Rd and denote the kernel of ∆ in P l by Hl. This latter space consists of harmonic and homogeneous polynomials of degree l and its dimension is given by dimHl = 2(l + α)Γ(2α + l) Γ(l + 1)Γ(2α + 1) , where Γ(z) denotes the Euler gamma function. Both these spaces are invariant under the natural action of the group K = SO(d) on functions on Rd given by k · f(x) = f(k−1x) for k ∈ K, x ∈ Rd. It is known that this group acts irreducibly in Hl for each l, and the representations so obtained are inequivalent for l 6= l′. The surface spherical harmonics of order l are by definition the restrictions of elements from Hl to the unit sphere Sd−1, and since the restriction map commutes with the action of rotations the spaces of surface spherical harmonics of any fixed order are invariant and irreducible under K. We endow P l = P l(Rd) with an inner product defined by the formula 〈P |Q〉 := ∫ Sd−1 P (ξ)Q(ξ) dσ(ξ), (1) where dσ(·) is the Euclidean surface measure on the unit sphere Sd−1 normalized so that the total area of the sphere is 1. In fact, the integral on the right hand side extends to the natural inner product on L2(Sd−1, dσ) and it is known that the spaces of spherical surface harmonics of different orders are orthogonal to each other with respect to this inner product. We recall that a function f , defined on the unit sphere Sd−1, is said to be a zonal function (relative to a point η ∈ Sd−1) if it is invariant with respect to the isotropy group Kη of η. Any such function depends in fact on the inner product (ξ | η) only, and so there exists a function φ defined on the closed unit interval [−1, 1] ⊂ R so that f(ξ) = φ((ξ | η)), for all ξ ∈ Sd−1. (2) We shall call φ the profile function of f . 1.2 The canonical decomposition of homogeneous polynomials It is well known that every homogeneous polynomial of degree l can be represented as a sum of products of harmonic homogeneous polynomials with even powers of the radius, cf. equation (3) below, and this decomposition is usually called the canonical decomposition of homogeneous polynomials. While the general form of the canonical decomposition, i.e. equation (3), is stated Zonal Functions and Fourier Transforms 3 in all sources concerned with this matter, the explicit formula for harmonic components of a given homogeneous polynomial is seldom quoted. The only source known to us, where the formula can be found, is the paper [7] of Lucquiaud. We record it here since it is essential for considerations to follow, in particular, in establishing formula (6) giving expansion of elementary zonal polynomials of the form (x | η)l, where η ∈ Sd−1 is an arbitrary unit vector. Theorem 1 (The canonical decomposition). The space P l decomposes orthogonally as the sum P l = ⊕[l/2] k=0r 2kHl−2k and the decomposition is invariant with respect to the action of the group SO(d). Explicitly, every polynomial P ∈ P l may be written as P = [l/2]∑ k=0 r2khl−2k(P ), where hl−2k(P ) ∈ Hl−2k (3) are called the harmonic components of P and are given by hl−2k(P ) = [l/2]−k∑ j=0 el j(k)r2j∆k+jP (4) with the coefficients el j(k) determined by el j(k) = (−1)j (α + l − 2k)Γ(α + l − 2k − j) 4k+jk!j!Γ(α + l + 1− k) . (5) The maps P 7→ r2khl−2k(P ) ∈ P l are projections onto SO(d)-irreducible subspaces of P l com- muting with the action of the group SO(d). 2 Expansions of zonal functions 2.1 Elementary zonal functions and reproducing kernels To proceed, we need to recall an explicit formula for the Gegenbauer polynomial Cα l of degree l and index α, given for example in [8, Section 5.3.2] or [13, Chapter 9.2], which reads as follows: Cα l (t) = [l/2]∑ j=0 (−1)j Γ(α + l − j) Γ(α)Γ(j + 1)Γ(l + 1− 2j) (2t)l−2j . Applying the formulae for the canonical decomposition given in (4) and (5) to elementary zonal polynomials (x | η)l, where η ∈ Sd−1 and l is a nonnegative integer, we obtain (x | η)l = 2−lΓ(α)Γ(l + 1)|x|l [l/2]∑ k=0 (α + l − 2k) k!Γ(α + l + 1− k) Cα l−2k ( (ξ | η) ) , x = |x|ξ. (6) In particular, the spherical harmonic obtained by restricting to the unit sphere the harmonic component hl(Pη) of the highest degree of Pη(x) = (x | η)l, which is given by the formula hl(Pη)(ξ) = 2−lΓ(α)Γ(l + 1) (α + l) Γ(α + l + 1) Cα l ((ξ | η)), plays an important role in the group representation theoretic interpretation of the decomposi- tion (1). With normalization given by Z l η(ξ) = [ Cα l (1) ]−1 Cα l ((ξ | η)) 4 A. Bezubik and A. Strasburger it satisfies dimHl ∫ Sd−1 Z l η(ξ)P (ξ) dσ(ξ) = P (η). Because of this property, Z l η(ξ) is called the reproducing kernel for the space Hl. Moreover, it is uniquely (up to a scalar multiple) determined by the property of being invariant under the action of the isotropy subgroup Kη of the point η ∈ Sd−1. 2.2 A differential formula for expansions of smooth zonal functions Now recall [9, 12] that every square integrable function on the sphere can be written as a series of spherical harmonics (the Fourier–Laplace expansion). For zonal functions this expansion, thanks to an easy group representation theoretic argument, reduces to f(ξ) = ∞∑ m=0 fmZm η (ξ), where fm = dimHm ∫ Sd−1 f(ξ)Zm η (ξ) dσ(ξ). By taking into account the invariance under Kη of the integrand and equation (2), the coefficients may be expressed as integrals fm = (α + m)Γ(α)√ πΓ(α + 1/2) ∫ 1 −1 φ(t)Cα m(t) ( 1− t2 )α−1/2 dt, what reduces the problem of spherical expansion of zonal functions to the expansion of profile functions φ with respect to the (orthogonal) system of Gegenbauer polynomials. The following result shows that the coefficients fm of the expansion can also be expressed in terms of the coefficients of the Taylor expansion of the profile function φ, provided the latter satisfies suitable regularity assumptions. Theorem 2. Assume φ : [−1, 1] → C has the Taylor expansion φ(t) = ∞∑ m=0 φ(m)(0) m! tm that is absolutely convergent on the closed interval [−1, 1], and let f(ξ) = φ((ξ | η)) be the zonal function on the sphere Sd−1 corresponding to φ. Then the spherical Fourier expansion of f(ξ) is given by f(ξ) = Γ(α + 1) ∞∑ m=0 fm dimHmZm η (ξ), (7) where the coefficients of the expansion can be expressed as fm = ∞∑ k=0 φ(m+2k)(0) 2m+2kk!Γ(α + m + k + 1) . A detailed proof of this result is contained in the forthcoming paper [3] of the authors, and here we shall present its main line only. It consists in substituting the expansion formula (6) into the Taylor series of φ and rearanging terms so that to group together the terms corresponding to the Gegenbauer polynomials of a given degree. This procedure requires some estimates on the coefficients which assure the absolute convergence of the double series, which are presented in detail in [3]. Below we briefly present two applications of this expansion for obtaining new derivations of some classical results. Zonal Functions and Fourier Transforms 5 2.3 The plane wave expansion A well known and very useful instance of the expansion (7) is the so called plane wave expan- sion, giving a representation of the exponential function ei(x|η) as a series of zonal harmonic polynomials. The expansion involves the Bessel functions of the first kind of order ν ∈ C with Re ν > −1, which are given as Jν(t) = ( t 2 )ν ∞∑ k=0 (−1)k Γ(k + 1)Γ(k + ν + 1) ( t 2 )2k , t ∈ C. (8) For some purposes the results are better expressed with the aid of the so called spherical Bessel functions, which are given as jν(t) = Γ(ν + 1) ( t 2 )−ν Jν(t). We point out that all classical proofs of this formula known to us are obtained by applying certain integral identities of the Hecke–Bochner type, as in [5, 9]. With the use of (7) we get it by direct differentiation of the exponential eirt and comparison with the power series expansion of the Bessel function (8). Corollary 1. For an arbitrary unit vector η ∈ Sd−1 ⊂ Rd and x ∈ Rd, the plane wave ei(x|η) admits the following expansion ei(x|η) = ∞∑ m=0 im dimHm Γ(α + 1) Γ(α + m + 1) (r 2 )m jα+m(r)Zm η (ξ), x = rξ, ξ ∈ Sd−1. The series converges absolutely on each sphere of radius r and uniformly with respect to ξ, η ∈ Sd−1. 2.4 The generating function of Gegenbauer polynomials Take a fixed element x 6= 0 from the unit ball in Rd and write x = rη, η ∈ Sd−1. The function Sd−1 3 ξ 7→ |ξ − x|−2α = ( 1− 2r(ξ | η) + r2 )−α is clearly a zonal function with pole at η corresponding to the profile function (1− 2rt + r2)−α. The expansion resulting from (7) has the form (1− 2r(ξ | η) + r2)−α = ∞∑ m=0 Γ(α + m) Γ(2α)Γ(m + 1) rmZm ξ (η) and can be reduced to the familiar formula for the generating function of Gegenbauer polynomials ( 1− 2rt + r2 )−α = ∞∑ m=0 rmCα m(t), as given e.g. in [1, 5, 8]. 6 A. Bezubik and A. Strasburger 3 The Fourier transforms of SO(d)-finite functions In this section we shall present some applications of the plane wave expansion given in Corollary 1 to problems of Fourier analysis in Euclidean space. The subject is related to the well known Bochner formula (c.f. e.g. [1, 9]), which describes the restriction of the Fourier transform to the space of functions of the form f(r)P (x), where f is a radial function and P ∈ Hl a homogeneous harmonic polynomial. The result is again a product of the same harmonic polynomial P with a radial function, which is expressed as the so called Hankel transform of the original radial factor and is given by the formula (12) below. The result we present in Corollary 4 generalizes that relation for the case of arbitrary homogeneous polynomials and is a combination of results obtained by the authors in [11, 2] and by F.J. Gonzalez-Vieli in [6]. 3.1 The case of SO(d)-finite functions on the sphere We take the Fourier transform of suitable regular (e.g. L1(Rd)) functions on Rd as defined by Ff(x) = (2π)− d 2 ∫ Rd ei(x | y)f(y) dy, x ∈ Rd. Observe that the above definition of the Fourier transform also makes sense in the case when f is a function defined on the unit sphere — in this case it can be regarded as the Fourier transform of a measure supported on the sphere. Especially interesting is the case, when the measure on the sphere comes from restricting a homogeneous polynomial to the sphere, since this way we obtain a so-called SO(d)-finite measure (since its SO(d)-translates span a finite dimensional subspace). Theorem 3. If P ∈ P l, then the Fourier transform of the measure P (ξ)dσ(ξ) with support on the unit sphere Sd−1 is given by the following equivalent formulae F(P ) = ∫ Sd−1 ei(x | η)P (η) dσ(η) = ( i 2 )l [l/2]∑ k=0 (−1)k22kΓ(α + 1) Γ(α + l + 1− 2k) jα+l−2k(|x|)hl−2k(P )(x) (9) = ( i 2 )l [l/2]∑ k=0 (−1)kΓ(α + 1) k!Γ(α + l + 1− k) jα+l−k(|x|)(∆kP )(x) (10) with hl−2k(P ) denoting the harmonic components of P as in equation (3). The formula (10) has been derived by F.J. Gonzalez [6] and the equivalence of those two forms was observed by the present authors and A. Da̧browska in [2]. Theorem 3 implies the following interesting function theoretical corollary. By comparing the two expressions (9) and (10) from this theorem one may derive the following multi-step recurrence relation for spherical Bessel functions. Corollary 2. If α ≥ 0 is a half odd integer (or an integer) then for any l ∈ Z+ the following relations hold jα+l−s(r) = s∑ k=0 s! Γ(α + l + 1− s)Γ(α + l − k − s) k!(s− k)!Γ(α + l + 1− k)Γ(α + l − 2k) (r 2 )2(s−k) jα+l−2k(r) for s = 1, . . . , [l/2]. Zonal Functions and Fourier Transforms 7 In terms of the Bessel functions of the first kind, this is expressed by 1 s! ( 2 r )s Jα+l−s(r) = s∑ k=0 Γ(α + l − k − s)Γ(α + l + 1− 2k) k!(s− k)!Γ(α + l + 1− k)Γ(α + l − 2k) Jα+l−2k(r). (11) It is interesting to note that these latter relations unify several classical relations satisfied by Bessel functions like [1, equation (4.6.11)] or [8, Chapter 3.2.2]. In fact, taking into account the relation J−1/2(t) = ( 1 2 πt )−1/2 cos t, which follows directly from the expansion (8), and the familiar recurrence relations satisfied by Jν(t), namely( 1 t d dt )l (t−νJν(t)) = (−1)lt−ν−lJν+l(t) one can derive from (11) the following relations. Corollary 3 (Finite expansions of Bessel functions). The Bessel functions of integer order satisfy the relation 1 n! ( 2 t )n Jn(t) = n∑ k=0 εk 1 (n + k)!(n− k)! J2k(t), where εk = { 1, k = 0 2, k = 1, 2, 3 . . . , while those of half odd integer order satisfy Jn+1/2(t) = √ 2 πx sin(t− nπ/2) [n/2]∑ k=0 (−1)k(n + 2k)! (2k)!(n− 2k)!(2t)2k + cos(t− nπ/2) [(n−1)/2]∑ k=0 (−1)k(n + 2k + 1)! (2k + 1)!(n− 2k − 1)!(2t)2k+1  . 3.2 The generalized Bochner formula and the Hankel transform For our last topic recall that for suitable functions on the nonnegative real axis R+, say, with φ belonging to the Schwartz space S(R), one defines the Hankel transform by the formula Hν(φ)(t) = 2−ν Γ(ν + 1) ∫ ∞ 0 φ(s)jν(st)s2ν+1ds. (12) Theorem 3 above now immediately implies that the generalized Bochner formula which was previously obtained in [11] can also be expressed by a pair of equivalent formulae. Corollary 4 (Generalized Bochner identity). If P ∈ P l, then the Fourier transform of the function f(|x|)P (x) is given by the following expressions: (2π)− d 2 ∫ Rd f(|x|)P (x)ei(y|x)dx = il [l/2]∑ k=0 (−1)kHα+l−2k(s2kf)(|y|)hl−2k(P )(y) = il [l/2]∑ k=0 (−1)k 2kk! Hα+l−k(f)(|y|)∆kP (y) 8 A. Bezubik and A. Strasburger This implies in turn the following: Corollary 5 (Periodicity relation for the Hankel transform). For any φ ∈ S(R) with α and l satisfying conditions of Corollary 2 above, the Hankel transform satisfies the following relation Hα+l(φ)(t) = 2(α + l − 1)Hα+l−1(φ)(t)−Hα+l−2 ( s2φ ) (t). 4 Conclusion In this paper we have demonstrated that differential identities for homogeneous polynomials like those implied by equations (3)–(5) can be effectively used for solving problems in harmonic analysis, which so far have been approached by means of integral identities of the type of Hecke– Bochner formula. In our opinion other possibilities of using that approach should certainly be further explored. Acknowledgements The results contained in this paper were presented at the conference Symmetry in Nonlinear Mathematical Physics in Kyiv, June 20–26, 2005 and also at the Seminar Sophus Lie in Nancy, June 10, 2005. We thank the organizers of those meetings for enabling us to present these results there. We are also obliged to the referees for remarks which, as we hope, enabled us to improve the presentation in the paper. In particular, the reference [4] was indicated by the referee. [1] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge, Cambridge University Press, 1999. [2] Bezubik A., Da̧browska A., Strasburger A., On the Fourier transform of SO(d)-finite measures on the unit sphere, Arch. Math. (Basel), 2005, V.84, 470–480. [3] Bezubik A., Da̧browska A., Strasburger A., On spherical expansions of zonal functions on Euclidean spheres, submitted. [4] zu Castell W., Filbir F., Radial Basis functions and corresponding zonal series expansions on the sphere, J. Approx. Theory, 2005, V.134, 65–79. [5] Faraut J., Analyse harmonique et fonctions speciales, in Deux Cours d’Analyse Harmonique, Editors J. Fa- raut and K. Harzallah, Ecole d’Ètè d’Analyse Harmonique de Tunis, 1984, Basel, Birkhäuser Verlag, 1987. [6] Gonzalez Vieli F.J., Inversion de Fourier ponctuelle des distributions à support compact, Arch. Math. (Basel), 2000, V.75, 290–298. [7] Lucquiaud J.C., Generalization sous forme covariante des polynomes de Gegenbauer, J. Math. Pures Appl. (9), 1984, V.63, 265–282. [8] Magnus W., Oberhettinger F., Soni R.P., Formulas and theorems for the special functions of mathematical physics, 3rd ed., Berlin, Springer-Verlag, 1966. [9] Müller C., Analysis of spherical symmetries in Euclidean spaces, New York, Springer-Verlag, 1998. [10] Stein E.M., Weiss G., Introduction to harmonic analysis on Euclidean spaces, Princeton, Princeton Univer- sity Press, 1971. [11] Strasburger A., A generalization of the Bochner identity, Exposition. Math., 1993, V.11, 153–157. [12] Vilenkin N.J., Special functions and the theory of group representations, Moscow, Nauka, 1965 (in Russian). [13] Wawrzyńczyk A., Group representations and special functions, Dordrecht – Warszawa, D. Reidel and PWN, 1984. 1 Introduction and preliminaries on spherical harmonics 1.1 Preliminaries and notations 1.2 The canonical decomposition of homogeneous polynomials 2 Expansions of zonal functions 2.1 Elementary zonal functions and reproducing kernels 2.2 A differential formula for expansions of smooth zonal functions 2.3 The plane wave expansion 2.4 The generating function of Gegenbauer polynomials 3 The Fourier transforms of SO(d)-finite functions 3.1 The case of SO(d)-finite functions on the sphere 3.2 The generalized Bochner formula and the Hankel transform 4 Conclusion