A Banach Principle for Semifinite von Neumann Algebras
Utilizing the notion of uniform equicontinuity for sequences of functions with the values in the space of measurable operators, we present a non-commutative version of the Banach Principle for L∞.
Saved in:
Date: | 2006 |
---|---|
Main Authors: | Chilin, V., Litvinov, S. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2006
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146441 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A Banach Principle for Semifinite von Neumann Algebras / V. Chilin, S. Litvinov // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Locally Compact Quantum Groups. A von Neumann Algebra Approach
by: Alfons Van Daele
Published: (2014) -
Mappings preserving sum of products a ◦ b + ba* on factor von Neumann algebras
by: Ferreira, J.C.M., et al.
Published: (2021) -
Mappings preserving sum of products \(a\circ b+ba^{*}\) on factor von Neumann algebras
by: Ferreira, J. C. M., et al.
Published: (2021) -
Toeplitz Operators with Radial Symbols on Bergman Space and Schatten-von Neumann Classes
by: Z. Bendaoud, et al.
Published: (2020) -
Von Neumann regular matrices over a commutative Bezout domain is unit regular matrices
by: B. M. Kuznitska
Published: (2013)