Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾
We consider a q-Painlevé III equation and a q-Painlevé II equation arising from a birational representation of the affine Weyl group of type (A₂+A₁)⁽¹⁾. We study their hypergeometric solutions on the level of τ functions.
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2010
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146518 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hypergeometric τ Functions of the q-Painlevé Systems of Type ((A₂+A₁)⁽¹⁾ / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 34 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146518 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465182019-02-10T01:25:09Z Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾ Nakazono, N. We consider a q-Painlevé III equation and a q-Painlevé II equation arising from a birational representation of the affine Weyl group of type (A₂+A₁)⁽¹⁾. We study their hypergeometric solutions on the level of τ functions. 2010 Article Hypergeometric τ Functions of the q-Painlevé Systems of Type ((A₂+A₁)⁽¹⁾ / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 34 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D05; 33D15; 33E17; 39A13 DOI:10.3842/SIGMA.2010.084 http://dspace.nbuv.gov.ua/handle/123456789/146518 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider a q-Painlevé III equation and a q-Painlevé II equation arising from a birational representation of the affine Weyl group of type (A₂+A₁)⁽¹⁾. We study their hypergeometric solutions on the level of τ functions. |
format |
Article |
author |
Nakazono, N. |
spellingShingle |
Nakazono, N. Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾ Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Nakazono, N. |
author_sort |
Nakazono, N. |
title |
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾ |
title_short |
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾ |
title_full |
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾ |
title_fullStr |
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾ |
title_full_unstemmed |
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A₂+A₁)⁽¹⁾ |
title_sort |
hypergeometric τ functions of the q-painlevé systems of type (a₂+a₁)⁽¹⁾ |
publisher |
Інститут математики НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146518 |
citation_txt |
Hypergeometric τ Functions of the q-Painlevé Systems of Type ((A₂+A₁)⁽¹⁾ / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 34 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT nakazonon hypergeometrictfunctionsoftheqpainlevesystemsoftypea2a11 |
first_indexed |
2025-07-11T00:10:16Z |
last_indexed |
2025-07-11T00:10:16Z |
_version_ |
1837307136988676096 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 6 (2010), 084, 16 pages
Hypergeometric τ Functions
of the q-Painlevé Systems of Type (A2 + A1)
(1)
Nobutaka NAKAZONO
Graduate School of Mathematics, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
E-mail: n-nakazono@math.kyushu-u.ac.jp
URL: http://researchmap.jp/nakazono/
Received August 17, 2010, in final form October 08, 2010; Published online October 14, 2010
doi:10.3842/SIGMA.2010.084
Abstract. We consider a q-Painlevé III equation and a q-Painlevé II equation arising from
a birational representation of the affine Weyl group of type (A2 + A1)(1). We study their
hypergeometric solutions on the level of τ functions.
Key words: q-Painlevé system; hypergeometric function; affine Weyl group; τ function
2010 Mathematics Subject Classification: 33D05; 33D15; 33E17; 39A13
1 Introduction
We consider a q-analog of the Painlevé III equation (q-PIII) [8, 12, 13, 32]
gn+1 =
q2N+1c2
fngn
1 + a0q
nfn
a0qn + fn
, fn+1 =
q2N+1c2
fngn+1
1 + a2a0q
n−mgn+1
a2a0qn−m + gn+1
, (1.1)
and that of the Painlevé II equation (q-PII) [12, 30, 20]
Xk+1 =
q2N+1c2
XkXk−1
1 + a0q
k/2Xk
a0qk/2 +Xk
, (1.2)
for the unknown functions fn = fn(m,N), gn = gn(m,N), and Xk = Xk(N) and the indepen-
dent variables n, k ∈ Z. Here m,N ∈ Z and a0, a2, c, q ∈ C× are parameters. These equations
arise from a birational representation of the (extended) affine Weyl group of type (A2 +A1)(1).
Note that substituting
m = 0, a2 = q1/2,
and putting
fk(0, N) = X2k(N), gk(0, N) = X2k−1(N),
in (1.1) yield (1.2). This procedure is called a symmetrization of (1.1), which comes from the
terminology used for Quispel–Roberts–Thompson (QRT) mappings [28, 29].
It is well known that the τ functions play a crucial role in the theory of integrable systems [19],
and it is also possible to introduce them in the theory of Painlevé systems [5, 6, 7, 13, 21, 22,
24, 25, 26, 27]. A representation of the affine Weyl groups can be lifted on the level of the
τ functions [10, 11, 33], which gives rise to various bilinear equations of Hirota type satisfied
the τ functions.
The hypergeometric solutions of various Painlevé and discrete Painlevé systems are expressib-
le in the form of ratio of determinants whose entries are given by hypergeometric type functions.
mailto:n-nakazono@math.kyushu-u.ac.jp
http://researchmap.jp/nakazono/
http://dx.doi.org/10.3842/SIGMA.2010.084
2 N. Nakazono
Usually, they are derived by reducing the bilinear equations to the Plücker relations by using the
contiguity relations satisfied by the entries of determinants [2, 3, 4, 8, 9, 13, 14, 15, 16, 20, 23, 31].
This method is elementary, but it encounters technical difficulties for Painlevé systems with large
symmetries. In order to overcome this difficulty, Masuda has proposed a method of constructing
hypergeometric solutions under a certain boundary condition on the lattice where the τ functions
live (hypergeometric τ functions), so that they are consistent with the action of the affine Weyl
groups. Although this requires somewhat complex calculations, the merit is that it is systematic
and that it can be applied to the systems with large symmetries. Masuda has carried out the
calculations for the q-Painlevé systems with E
(1)
7 and E
(1)
8 symmetries [17, 18] and presented
explicit determinant formulae for their hypergeometric solutions.
The purpose of this paper is to apply the above method to the q-Painlevé systems with the
affine Weyl group symmetry of type (A2 +A1)(1) and present the explicit formulae of the hyper-
geometric τ functions. The hypergeometric τ functions provide not only determinant formulae
but also important information originating from the geometry of lattice of the τ functions. The
result has been already announced in [12] and played an essential role in clarifying the mechanism
of reduction from hypergeometric solutions of (1.1) to those of (1.2).
This paper is organized as follows: in Section 2, we first review hypergeometric solutions of
q-PIII and then those of q-PII. We next introduce a representation of the affine Weyl group of
type (A2 +A1)(1). In Section 3, we construct the hypergeometric τ functions of q-PIII and those
of q-PII. We find that the symmetry of the hypergeometric τ functions of q-PIII are connected
with Heine’s transform of the basic hypergeometric series 2ϕ1.
We use the following conventions of q-analysis throughout this paper [1].
q-Shifted factorials:
(a; q)k =
k∏
i=1
(
1− aqi−1
)
.
Basic hypergeometric series:
sϕr
(
a1, . . . , as
b1, . . . , br
; q, z
)
=
∞∑
n=0
(a1, . . . , as; q)n
(b1, . . . , br; q)n(q; q)n
[
(−1)nqn(n−1)/2
]1+r−s
zn,
where
(a1, . . . , as; q)n =
s∏
i=1
(ai; q)n.
Jacobi theta function:
Θ(a; q) = (a; q)∞
(
qa−1; q
)
∞.
Elliptic gamma function:
Γ(a; p, q) =
(pqa−1; p, q)∞
(a; p, q)∞
,
where
(a; p, q)k =
k−1∏
i,j=0
(
1− piqja
)
.
It holds that
Θ(qa; q) = −a−1Θ(a; q), Γ(qa; q, q) = Θ(a; q)Γ(a; q, q).
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A2 +A1)(1) 3
2 q-PIII and q-PII
2.1 Hypergeometric solutions of q-PIII and q-PII
First, we review the hypergeometric solutions of q-PIII and q-PII. The hypergeometric solutions
of q-PIII have been constructed as follows:
Proposition 2.1 ([8]). The hypergeometric solutions of q-PIII, (1.1), with c = 1 are given by
fn = −a0q
n
ψn,m−1
N+1 ψn,m
N
ψn,m
N+1ψ
n,m−1
N
, gn = a0
−1a2q
−n−m+1
ψn,m
N+1ψ
n−1,m−1
N
ψn−1,m−1
N+1 ψn,m
N
,
where ψn,m
N (N ∈ Z≥0) is an N ×N determinant defined by
ψn,m
N =
∣∣∣∣∣∣∣∣∣
Fn,m Fn+1,m · · · Fn+N−1,m
Fn−1,m Fn,m · · · Fn+N−2,m
...
...
. . .
...
Fn−N+1,m Fn−N+2,m · · · Fn,m
∣∣∣∣∣∣∣∣∣ , ψn,m
0 = 1,
and Fn,m is an arbitrary solution of the systems
Fn+1,m − Fn,m = −a0
2q2nFn,m−1, (2.1)
Fn,m+1 − Fn,m = −a2
−2q2m+2Fn−1,m. (2.2)
The general solution of (2.1) and (2.2) is given by
Fn,m =
An,m
(a2
−2q2m+2; q2)∞
1ϕ1
(
0
a2
2q−2m; q2, a2
2a0
2q2n−2m
)
+Bn,m
Θ(a0
2a2
2q2n−2m−2; q2)
(a2
2q−2m−2; q2)∞Θ(a0
2q2n; q2) 1ϕ1
(
0
a2
−2q2m+4; q
2, a0
2q2n+2
)
, (2.3)
where An,m and Bn,m are periodic functions of period one with respect to n and m, i.e.,
An,m = An+1,m = An,m+1, Bn,m = Bn+1,m = Bn,m+1.
The explicit form of the hypergeometric solutions of q-PII are given as follows:
Proposition 2.2 ([20]). The hypergeometric solutions of q-PII, (1.2), with c = 1 are given by
Xk = −a0q
k/2+N φk
N+1φ
k−1
N
φk−1
N+1φ
k
N
, (2.4)
where φk
N (N ∈ Z≥0) is an N ×N determinant defined by
φk
N =
∣∣∣∣∣∣∣∣∣
Gk Gk−1 · · · Gk−N+1
Gk+2 Gk+1 · · · Gk−N+3
...
...
. . .
...
Gk+2N−2 Gk+2N−3 · · · Gk+N−1
∣∣∣∣∣∣∣∣∣ , φk
0 = 1, (2.5)
and Gk is an arbitrary solution of the system
Gk+1 −Gk + a0
−2q−kGk−1 = 0. (2.6)
4 N. Nakazono
The general solution of (2.6) is given by
Gk = AkΘ(ia0q
(2k+1)/4; q1/2) 1ϕ1
(
0
−q1/2; q
1/2,−ia0q
(3+2k)/4
)
+BkΘ(−ia0q
(2k+1)/4; q1/2) 1ϕ1
(
0
−q1/2; q
1/2, ia0q
(3+2k)/4
)
, (2.7)
where Ak and Bk are periodic functions of period one, i.e.,
Ak = Ak+1, Bk = Bk+1.
2.2 Projective reduction from q-PIII and q-PII
We formulate the family of Bäcklund transformations of q-PIII and q-PIV as a birational rep-
resentation of the affine Weyl group of type (A2 + A1)(1). Here, q-PIV is a q-analog of the
Painlevé IV equation discussed in [13]. We refer to [21] for basic ideas of this formulation.
We define the transformations si (i = 0, 1, 2) and π on the variables fj (j = 0, 1, 2) and
parameters ak (k = 0, 1, 2) by
si(aj) = ajai
−aij , si(fj) = fj
(
ai + fi
1 + aifi
)uij
,
π(ai) = ai+1, π(fi) = fi+1,
for i, j ∈ Z/3Z. Here the symmetric 3× 3 matrix
A = (aij)2i,j=0 =
2 −1 −1
−1 2 −1
−1 −1 2
,
is the Cartan matrix of type A(1)
2 , and the skew-symmetric one
U = (uij)2i,j=0 =
0 1 −1
−1 0 1
1 −1 0
,
represents an orientation of the corresponding Dynkin diagram. We also define the transforma-
tions wj (j = 0, 1) and r by
w0(fi) =
aiai+1(ai−1ai + ai−1fi + fi−1fi)
fi−1(aiai+1 + aifi+1 + fifi+1)
, w0(ai) = ai,
w1(fi) =
1 + aifi + aiai+1fifi+1
aiai+1fi+1(1 + ai−1fi−1 + ai−1aifi−1fi)
, w1(ai) = ai,
r(fi) =
1
fi
, r(ai) = ai,
for i ∈ Z/3Z.
Proposition 2.3 ([13]). The group of birational transformations 〈s0, s1, s2, π, w0, w1, r〉 forms
the affine Weyl group of type (A2 + A1)(1), denoted by W̃ ((A2 + A1)(1)). Namely, the transfor-
mations satisfy the fundamental relations
si
2 = (sisi+1)3 = π3 = 1, πsi = si+1π (i ∈ Z/3Z),
w0
2 = w1
2 = r2 = 1, rw0 = w1r,
and the action of W̃ (A(1)
2 ) = 〈s0, s1, s2, π〉 and that of W̃ (A(1)
1 ) = 〈w0, w1, r〉 commute with each
other.
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A2 +A1)(1) 5
In general, for a function F = F (ai, fj), we let an element w ∈ W̃ ((A2 + A1)(1)) act as
w.F (ai, fj) = F (ai.w, fj .w), that is, w acts on the arguments from the right. Note that a0a1a2 =
q and f0f1f2 = qc2 are invariant under the action of W̃ ((A2 +A1)(1)) and W̃ (A(1)
2 ), respectively.
We define the translations Ti (i = 1, 2, 3, 4) by
T1 = πs2s1, T2 = s1πs2, T3 = s2s1π, T4 = rw0, (2.8)
whose action on parameters ai (i = 0, 1, 2) and c is given by
T1 : (a0, a1, a2, c) 7→
(
qa0, q
−1a1, a2, c
)
,
T2 : (a0, a1, a2, c) 7→ (a0, qa1, q
−1a2, c),
T3 : (a0, a1, a2, c) 7→
(
q−1a0, a1, qa2, c
)
,
T4 : (a0, a1, a2, c) 7→ (a0, a1, a2, qc).
Note that Ti (i = 1, 2, 3, 4) commute with each other and T1T2T3 = 1. The action of T1 on the
f -variables can be expressed as
T1(f1) =
qc2
f1f0
1 + a0f0
a0 + f0
, T1(f0) =
qc2
f0T1(f1)
1 + a2a0T1(f1)
a2a0 + T1(f1)
. (2.9)
Or, applying T1
nT2
mT4
N (n,m,N ∈ Z) on (2.9) and putting
fn,m
i,N = T1
nT2
mT4
N (fi) (i = 0, 1, 2),
we obtain
fn+1,m
1,N =
q2N+1c2
fn,m
1,N fn,m
0,N
1 + a0q
nfn,m
0,N
a0qn + fn,m
0,N
, fn+1,m
0,N =
q2N+1c2
fn,m
0,N fn+1,m
1,N
1 + a2a0q
n−mfn+1,m
1,N
a2a0qn−m + fn+1,m
1,N
,
which is equivalent to q-PIII. Then T1 and Ti (i = 2, 4) are regarded as the time evolution and
Bäcklund transformations of q-PIII, respectively. We here note that we also obtain q-PIV by
identifying T4 as a time evolution [13].
In order to formulate the symmetrization to q-PII, it is crucial to introduce the transforma-
tion R1 defined by
R1 = π2s1, (2.10)
which satisfies
R1
2 = T1.
Considering the projection of the action of R1 on the line a2 = q1/2, we have
R1 : (a0, a1, c) 7→ (q1/2a0, q
−1/2a1, c),
R1(f0) =
qc2
f0f1
1 + a0f0
a0 + f0
, R1(f1) = f0. (2.11)
Applying R1
kT4
N on (2.11) and putting
fk
i,N = R1
kT4
N (fi) (i = 0, 1, 2),
we have
fk+1
0,N =
q2N+1c2
fk
0,Nf
k−1
0,N
1 + a0q
k/2fk
0,N
a0qk/2 + fk
0,N
,
6 N. Nakazono
which is equivalent to q-PII. Then R1 and T4 are regarded as the time evolution and a Bäcklund
transformation of q-PII, respectively.
In general, we can derive various discrete Painlevé systems from elements of infinite order
of affine Weyl groups that are not necessarily translations by taking a projection on a certain
subspace of the parameter space. We call such a procedure a projective reduction [12]. The
symmetrization is a kind of the projective reduction.
2.3 Birational representation of W̃ ((A2 + A1)
(1)) on the τ function
We introduce the new variables τi and τ i (i ∈ Z/3Z) by letting
fi = q1/3c2/3 τ i+1τi−1
τi+1τ i−1
,
and lift a representation to the affine Weyl group on their level:
Proposition 2.4 ([33]). We define the action of si (i = 0, 1, 2), π, wj (j = 0, 1), and r on τk
and τk (k = 0, 1, 2) by the following formulae:
si(τi) =
uiτi+1τ i−1 + τ i+1τi−1
ui
1/2τ i
, si(τj) = τj (i 6= j),
si(τ i) =
viτ i+1τi−1 + τi+1τ i−1
vi
1/2τi
, si(τ j) = τ j (i 6= j),
π(τi) = τi+1, π(τ i) = τ i+1,
w0(τ i) =
ai+1
1/3(τ iτi+1τi+2+ ui−1τiτ i+1τi+2+ ui+1
−1τiτi+1τ i+2)
ai+2
1/3τ i+1τ i+2
, w0(τi) = τi,
w1(τi) =
ai+1
1/3(τiτ i+1τ i+2+ vi−1τ iτi+1τ i+2+ vi+1
−1τ iτ i+1τi+2)
ai+2
1/3τi+1τi+2
, w1(τ i) = τ i,
r(τi) = τ i, r(τ i) = τi,
with
ui = q−1/3c−2/3ai, vi = q1/3c2/3ai,
where i, j ∈ Z/3Z. Then, 〈s0, s1, s2, π, w0, w1, r〉 forms the affine Weyl group W̃ ((A2 +A1)(1)).
We define the τ function τn,m
N (n,m,N ∈ Z) by
τn,m
N = T1
nT2
mT4
N (τ1).
We note that
τ0 = τ−1,0
0 , τ1 = τ0,0
0 , τ2 = τ0,1
0 , τ0 = τ−1,0
1 , τ1 = τ0,0
1 , τ2 = τ0,1
1 , (2.12)
and
fn,m
0,N = q(2N+1)/3c2/3
τn,m
N+1τ
n,m+1
N
τn,m
N τn,m+1
N+1
, fn,m
1,N = q(2N+1)/3c2/3
τn,m+1
N+1 τn−1,m
N
τn,m+1
N τn−1,m
N+1
,
fn,m
2,N = q(2N+1)/3c2/3
τn−1,m
N+1 τn,m
N
τn−1,m
N τn,m
N+1
.
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A2 +A1)(1) 7
Let us consider the τ functions for q-PII. We set
τk
N = R1
kT4
N (τ1).
Note that
τ0 = τ−2
0 , τ1 = τ0
0 , τ2 = τ−1
0 , τ0 = τ−2
1 , τ1 = τ0
1 , τ2 = τ−1
1 , (2.13)
and
fk
0,N = q(2N+1)/3c2/3 τ
k
N+1τ
k−1
N
τk
Nτ
k−1
N+1
.
In general, it follows that
τn,0
N = τ2n
N , τn,1
N = τ2n−1
N .
For convenience, we introduce αi, γ, and Q by
αi
6 = ai, γ6 = c, Q6 = q.
3 Hypergeometric τ functions of the q-Painlevé systems
of type (A2 + A1)
(1)
In this section, we construct the hypergeometric τ functions of q-PIII and q-PII. We define the
hypergeometric τ functions of q-PIII by τn,m
N consistent with the action of 〈T1, T2, T3, T4〉. We
also define the hypergeometric τ functions of q-PII by τk
N consistent with the action of 〈R1, T4〉.
Here, we mean τ(α) consistent with a action of transformation r as
r.τ(α) = τ(α.r).
We then regard τn,m
N as function in α0 and α2, i.e.,
τn,m
N = τ0,0
N (Qnα0, Q
−mα2).
We also regard τk
N as function in α0, i.e.,
τk
N = τ0
N (Qk/2α0).
3.1 Hypergeometric τ functions of q-PIII
We construct the hypergeometric τ functions of q-PIII. By the action of the affine Weyl group,
τn,m
N is determined as a rational function in τn,m
0 and τn,m
1 (or τi and τ i). Thus, our purpose is
determining τn,m
0 and τn,m
1 consistent with the action of 〈T1, T2, T3, T4〉 and constructing τn,m
N
under the condition
γ = 1, (3.1)
and the boundary condition
τn,m
N = 0 (N < 0). (3.2)
First we consider the condition for τn,m
0 which follows from the boundary condition (3.2).
We use the bilinear equations obtained in [12]:
8 N. Nakazono
Proposition 3.1. The following bilinear equations hold:
τn,m
N+1τ
n,m
N−1 +Q4n−8m+4α1
−4α2
4
(
τn,m
N
)2 −Qn−2m+1α1
−1α2τ
n,m+1
N τn,m−1
N = 0, (3.3)
τn,m
N+1τ
n,m
N−1 +Q4n+4mα0
4α2
−4
(
τn,m
N
)2 −Qn+mα0α2
−1τn+1,m+1
N τn−1,m−1
N = 0, (3.4)
τn,m
N+1τ
n,m
N−1 +Q−8n+4m−4α0
−4α1
4
(
τn,m
N
)2 −Q−2n+m−1α0
−1α1τ
n+1,m
N τn−1,m
N = 0. (3.5)
By putting N = 0 in (3.3)–(3.5), we get
Q4n−8m+4α1
−4α2
4 (τn,m
0 )2 −Qn−2m+1α1
−1α2τ
n,m+1
0 τn,m−1
0 = 0, (3.6)
Q4n+4mα0
4α2
−4 (τn,m
0 )2 −Qn+mα0α2
−1τn+1,m+1
0 τn−1,m−1
0 = 0, (3.7)
Q−8n+4m−4α0
−4α1
4 (τn,m
0 )2 −Q−2n+m−1α0
−1α1τ
n+1,m
0 τn−1,m
0 = 0. (3.8)
We set
τn,m
0 = Γ(Q2n−m+1α0
2α2;Q,Q)Γ(Q−n+2m−1α1
2α0;Q,Q)Γ(Q−n−mα2
2α1;Q,Q)An,m
0 . (3.9)
From (3.6)–(3.8), the following equations hold:
(An,m
0 )2 = An,m+1
0 An,m−1
0 , (3.10)
(An,m
0 )2 = An+1,m+1
0 An−1,m−1
0 , (3.11)
(An,m
0 )2 = An+1,m
0 An−1,m
0 . (3.12)
We next determine τn,m
0 and τn,m
1 . From (2.8) and Proposition 2.4, we see that the action
of T1, T2, and T3 are given by
Ti(τi−1) = τi, (3.13)
Ti(τ i−1) = τ i, (3.14)
Ti(τi+1) =
αi−1
6τiτ i+1 +Q2τ iτi+1
Qαi−1
3τ i−1
, (3.15)
Ti(τ i+1) =
Q2αi−1
6τi+1τ i + τ i+1τi
Qαi−1
3τi−1
, (3.16)
Ti(τi) =
1
αi+1
3αi−1
6
τi
2
τi−1
+
αi+1αi−1
4
αi
2
τiτ i
τ i−1
+
αi
2αi−1
2
αi+1
τ iτiτi+1
τ i+1τi−1
+ αi+1
3 τ i
2τi+1
τ i+1τ i−1
, (3.17)
Ti(τ i) =
1
αi+1
3αi−1
6
τ i
2
τ i−1
+ αi
2αi+1
5αi−1
8 τiτ i
τi−1
+
1
αi
2αi+1
5αi−1
2
τiτ iτ i+1
τi+1τ i−1
+ αi+1
3 τi
2τ i+1
τi+1τi−1
, (3.18)
where i = 1, 2, 3.
Lemma 3.1. If τi and τ i are consistent with (3.13)–(3.16), then they are also consistent
with (3.17) and (3.18).
Proof. Applying Ti−1 on (3.16) and using (3.13) and (3.14), we have
Ti(τi) =
Q
αi+1
3αi−1
3
τi
τ i+1
Ti(τ i+1) +
αi+1
2αi−1
2
αi
τ i
τ i+1
Ti(τi+1). (3.19)
By using (3.15) and (3.16) for (3.19), we get (3.17). Similarly, applying Ti−1 on (3.15) and
using (3.13) and (3.14), we have
Ti(τ i) =
1
Qαi+1
3αi−1
3
τ i
τi+1
Ti(τi+1) +Qαi−1
3αi+1
3 τi
τi+1
Ti(τ i+1). (3.20)
By using (3.15) and (3.16) for (3.20), we get (3.18). �
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A2 +A1)(1) 9
From (2.12), we rewrite (3.15) and (3.16) as follows:
τ−1,0
0 τ0,1
1 −Q−1α1
3τ−1,1
0 τ0,0
1 +Q−2α1
6τ0,1
0 τ−1,0
1 = 0, (3.21)
τ0,0
0 τ−1,0
1 −Q−1α2
3τ−1,−1
0 τ0,1
1 +Q−2α2
6τ−1,0
0 τ0,0
1 = 0, (3.22)
τ0,1
0 τ0,0
1 −Q−1α0
3τ1,1
0 τ−1,0
1 +Q−2α0
6τ0,0
0 τ0,1
1 = 0, (3.23)
τ0,1
0 τ−1,0
1 −Qα1
3τ0,0
0 τ−1,1
1 +Q2α1
6τ−1,0
0 τ0,1
1 = 0, (3.24)
τ−1,0
0 τ0,0
1 −Qα2
3τ0,1
0 τ−1,−1
1 +Q2α2
6τ0,0
0 τ−1,0
1 = 0, (3.25)
τ0,0
0 τ0,1
1 −Qα0
3τ−1,0
0 τ1,1
1 +Q2α0
6τ0,1
0 τ0,0
1 = 0. (3.26)
We set
τn,m
1 = −Q2n+2mα0
2α2
−2 Θ(−Q−6nα0
−6;Q6)Θ(−Q6mα2
−6;Q6)
Θ(Q−6(n−m)α0
−6α2
−6;Q6)
τn,m
0 Fn,m−1. (3.27)
Here, Fn,m is equivalent to (2.3) because we obtain (2.1) and (2.2) from (3.24)–(3.26) and
(3.21)–(3.23), respectively. If we assume An,m
0 is an arbitrary constant, it does not contradict
(3.10)–(3.18). Therefore, we may set An,m
0 = 1.
Finally we construct τn,m
N .
Theorem 3.1. Under the assumption (3.1) and (3.2), the hypergeometric τ functions of q-PIII
are given as the follows:
τn,m
N = (−1)N(N+1)/2Q−2(2n−m)N2+6nNα0
−4N2+6Nα2
−2N2
×
(
Θ(−Q−6nα0
−6;Q6)Θ(−Q6mα2
−6;Q6)
Θ(Q−6(n−m)α0
−6α2
−6;Q6)
)N
× Γ(Q2n−m+1α0
2α2;Q,Q)Γ(Q−n+2m−1α1
2α0;Q,Q)
× Γ(Q−n−mα2
2α1;Q,Q)ψn,m−1
N , (3.28)
where
ψn,m
N =
∣∣∣∣∣∣∣∣∣
Fn,m Fn+1,m · · · Fn+N−1,m
Fn−1,m Fn,m · · · Fn+N−2,m
...
...
. . .
...
Fn−N+1,m Fn−N+2,m · · · Fn,m
∣∣∣∣∣∣∣∣∣ , ψn,m
0 = 1, ψn,m
−N = 0 (N > 0),
and
Fn,m =
An,m
(a2
−2q2m+2; q2)∞
1ϕ1
(
0
a2
2q−2m; q2, a2
2a0
2q2n−2m
)
+Bn,m
Θ(a0
2a2
2q2n−2m−2; q2)
(a2
2q−2m−2; q2)∞Θ(a0
2q2n; q2) 1ϕ1
(
0
a2
−2q2m+4; q
2, a0
2q2n+2
)
. (3.29)
Here, An,m and Bn,m are periodic functions of period one with respect to n and m.
Proof. We set
τn,m
N = (−1)N(N+1)/2Q−2(2n−m)N2+6nNα0
−4N2+6Nα2
−2N2
×
(
Θ(−Q−6nα0
−6;Q6)Θ(−Q6mα2
−6;Q6)
Θ(Q−6(n−m)α0
−6α2
−6;Q6)
)N
10 N. Nakazono
× Γ(Q2n−m+1α0
2α2;Q,Q)Γ(Q−n+2m−1α1
2α0;Q,Q)Γ(Q−n−mα2
2α1;Q,Q)ψn,m−1
N .
From (3.2), (3.9), and (3.27), we find
ψn,m
N = 0 (N < 0), ψn,m
0 = 1, ψn,m
1 = Fn,m.
Furthermore, it is easily verified that ψn,m
N satisfy
ψn,m
N+1ψ
n,m
N−1 −
(
ψn,m
N
)2 + ψn+1,m
N ψn−1,m
N = 0, (3.30)
from (3.5). In general, (3.30) admits a solution expressed in terms of the Toeplitz type deter-
minant
ψn,m
N = det (cn−i+j,m)i,j=1,...,N (N > 0),
under the boundary conditions
ψn,m
N = 0 (N < 0), ψn,m
0 = 1, ψn,m
1 = cn,m,
where cn,m is an arbitrary function. Therefore we have completed the proof. �
3.2 Hypergeometric τ functions of q-PII
In this section, we construct the hypergeometric τ functions of q-PII by two methods.
3.2.1 Hypergeometric τ functions of q-PII (I)
We construct the hypergeometric τ functions of q-PII by using those of q-PIII. We here note
that τn,m
N consistent with the action of 〈s2, T1, T2, T3, T4〉 is also consistent with the action of R1
because
R1 = s2T2
−1.
Therefore, we construct τn,m
N consistent with the action of 〈s2, T1, T2, T3, T4〉. The action of s2
on τn,m
N is
s2(τ
n,m
N ) = τn−m,−m
N . (3.31)
We consider only τn,m
0 and τn,m
1 because τn,m
N is determined as a rational function in τn,m
0
and τn,m
1 . It easily verified that τn,m
0 , (3.28) (or (3.9)), is consistent with the action of s2. When
N = 1, we rewrite (3.31) as
s2(Fn,m−1) = α2
−12Q−12m Θ(α0
−12Q12m−12n;Q12)
Θ(α0
−12α2
−12Q−12n;Q12)
Fn−m,−m−1, (3.32)
from (3.28). Moreover, by using (3.29), (3.32) can be rewritten as
s2(An,m)−Bn,m
(α2
12Q12m;Q12)∞
1ϕ1
(
0
α2
−12Q−12m+12;Q
12, α0
12Q12n−12m+12
)
=
(An,m − s2(Bn,m))Θ(α0
12Q12n−12m;Q12)
(α2
−12Q−12m;Q12)∞Θ(α0
12α2
12Q12n;Q12) 1ϕ1
(
0
α2
12Q12m+12;Q
12, α0
12α2
12Q12n+12
)
,
which implies that τn,m
1 is also consistent with the action of s2 when
s2(An,m) = Bn,m. (3.33)
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A2 +A1)(1) 11
Lemma 3.2. Under the assumption (3.33), the hypergeometric τ functions (3.28) are consistent
with the action of 〈s2, T1, T2, T3, T4〉.
Therefore we easily obtain the following theorem:
Theorem 3.2. Setting
R1(An,m) = Bn,m, (3.34)
α2 = Q1/2,
and putting
τ2n
N = τn,0
N , τ2n−1
N = τn,1
N ,
we obtain the hypergeometric τ functions of q-PII. Here τn,m
N is given by (3.28).
In general, the entries of determinants of the hypergeometric τ functions of Painlevé systems
are expressed by two-parameter family of the functions satisfying the contiguity relations. How-
ever the hypergeometric τ functions of q-PII in Theorem 3.2 have only one parameter because of
the condition (3.34). In the next section, we construct the hypergeometric τ functions of q-PII
which admits two parameters.
3.2.2 Hypergeometric τ functions of q-PII (II)
We construct the hypergeometric τ functions of q-PII whose ratios correspond to the hyper-
geometric solutions of q-PII in Proposition 2.2. By the action of the affine Weyl group, τk
N is
determined as a rational function of τk
0 and τk
1 (or τi and τ i). Thus, our purpose is determining τk
0
and τk
1 consistent with the action of 〈R1, T4〉 and constructing τk
N under the conditions
α2 = Q1/2, γ = 1, (3.35)
and the boundary condition
τk
N = 0 (N < 0). (3.36)
First we consider the condition for τk
0 which follows from the boundary condition (3.36). We
use the bilinear equation obtained in [12]:
Proposition 3.2. The following bilinear equation holds:
τk
N+1τ
k+1
N−1 −Q(k−4N+1)/2γ−2α0τ
k+2
N τk−1
N −Q−k+4N−1γ4α0
−2τk+1
N τk
N = 0. (3.37)
By putting N = 0 in (3.37), we get
Q3(k+1)/2α0
3τk+2
0 τk−1
0 + τk+1
0 τk
0 = 0. (3.38)
We set
τk
0 = Γ
(
Q(2k+3)/2α0
2;Q,Q
)
Γ
(
Q−k/2α0
−1;Q,Q
)
Γ
(
Q(−k+3)/2α0
−1;Q,Q
)
Ak
1. (3.39)
From (3.38), Ak
1 satisfies
Ak+2
1 Ak−1
1 = Ak+1
1 Ak
1. (3.40)
12 N. Nakazono
We next determine τk
0 and τk
1 . From (2.10) and Proposition 2.4, we see that the action of R1
on τk
0 and τk
1 is given by
R1(τ0) = τ2, (3.41)
R1(τ1) =
Q−2α0
6τ1τ2 + τ1τ2
Q−1α0
3τ0
, (3.42)
R1(τ2) = τ1, (3.43)
R1(τ0) = τ2, (3.44)
R1(τ1) =
Q2α0
6τ1τ2 + τ1τ2
Qα0
3τ0
, (3.45)
R1(τ2) = τ1. (3.46)
From (2.13), we rewrite (3.42) and (3.45) as
Qα0
−3τ−2
1 τ1
0 −Q2α0
−6τ0
1 τ
−1
0 − τ0
0 τ
−1
1 = 0, (3.47)
Q−1α0
−3τ−2
0 τ1
1 −Q−2α0
−6τ0
0 τ
−1
1 − τ0
1 τ
−1
0 = 0, (3.48)
respectively. Setting
τk
1 =
τk
0
Θ(Q3k+1α0
6;Q3)
Gk, (3.49)
then the systems (3.47) and (3.48) reduce to (2.6). Therefore Gk is equivalent to (2.7). If we
assume Ak
1 is an arbitrary constant, it does not contradict (3.40)–(3.46). Therefore, we may put
Ak
1 = 1.
Finally we present an explicit formula for τk
N .
Theorem 3.3. Under the assumption (3.35) and (3.36), the hypergeometric τ functions of q-PII
are given as the follows:
τk
N = (−1)N(N−1)/2QN(N−1)(k+N)α0
2N(N−1)
×
Γ(Q(2k+3)/2α0
2;Q,Q)Γ(Q−k/2α0
−1;Q,Q)Γ(Q(−k+3)/2α0
−1;Q,Q)
Θ(Q3k+1α0
6;Q3)N
φk
N ,
where
φk
N =
∣∣∣∣∣∣∣∣∣
Gk Gk−1 · · · Gk−N+1
Gk+2 Gk+1 · · · Gk−N+3
...
...
. . .
...
Gk+2N−2 Gk+2N−3 · · · Gk+N−1
∣∣∣∣∣∣∣∣∣ , φk
0 = 1, φk
−N = 0 (N > 0),
and
Gk = AkΘ
(
ia0q
(2k+1)/4; q1/2
)
1ϕ1
(
0
−q1/2; q
1/2,−ia0q
(3+2k)/4
)
+BkΘ
(
−ia0q
(2k+1)/4; q1/2
)
1ϕ1
(
0
−q1/2; q
1/2, ia0q
(3+2k)/4
)
.
Here, Ak and Bk are periodic functions of period one.
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A2 +A1)(1) 13
Proof. We set
τk
N = (−1)N(N−1)/2QN(N−1)(k+N)α0
2N(N−1)
×
Γ(Q(2k+3)/2α0
2;Q,Q)Γ(Q−k/2α0
−1;Q,Q)Γ(Q(−k+3)/2α0
−1;Q,Q)
Θ(Q3k+1α0
6;Q3)N
φk
N .
From (3.36), (3.39), and (3.49), we find that
φk
N = 0 (N < 0), φk
0 = 1, φk
1 = Gk.
From (3.37), φk
N satisfies
φk
N+1φ
k+1
N−1 − φk
Nφ
k+1
N + φk+2
N φk−1
N = 0, (3.50)
which is a variant of the discrete Toda equation. Under the conditions
φk
N = 0 (N < 0), φk
0 = 1, φk
1 = ck,
where ck is an arbitrary function. Equation (3.50) admits a solution expressed by
φk
N = det (ck+2i−j−1)i,j=1,...,N (N > 0).
This complete the proof. �
3.3 Relation between the hypergeometric τ functions
of q-PIII and Heine’s transform
Masuda showed that the consistency of a certain reflection transformation to the hypergeometric
τ functions of type E(1)
8 correspond to Bailey’s four term transformation formula [18]. It is
also shown that the consistency of a certain reflection transformation to the hypergeometric
τ functions of type E(1)
7 correspond to limiting case of Bailey’s 10ϕ9 transformation formula [17].
We here show that the consistency of s0 to the hypergeometric τ functions of q-PIII give rise to
a transformation of 1ϕ1 which is obtained by Heine’s transform for 2ϕ1.
The action of s0 on τn,m
N is
s0(τ
n,m
N ) = τ−n,m−n
N . (3.51)
We consider only τn,m
0 and τn,m
1 because τn,m
N is determined as a rational function in τn,m
0
and τn,m
1 . It easily verified that τn,m
0 , (3.28) (or (3.9)), is consistent with the action of s0. When
N = 1, (3.51) implies
s0(Fn,m−1) =
Θ(α2
−12Q−12n+12m;Q12)
Θ(α0
−12α2
−12Q12m;Q12)
F−n,m−n−1, (3.52)
from (3.28). Moreover, by using (3.29), (3.52) can be rewritten as
s0(An,m)1ϕ1
(
0
α0
12α2
12Q−12m+12;Q
12, α2
12Q12n−12m+12
)
−An,m
(α2
12Q12n−12m+12;Q12)∞
(α0
12α2
12Q−12m+12;Q12)∞
1ϕ1
(
0
α2
12Q12n−12m+12;Q
12, α2
12α0
12Q−12m+12
)
−Bn,mα0
12Q−12n (α0
−12α2
−12Q12m, α2
−12Q−12n+12m+12;Q12)∞
Θ(α0
12Q−12n;Q12)
14 N. Nakazono
× 1ϕ1
(
0
α2
−12Q−12n+12m+12;Q
12, α0
12Q−12n+12
)
+ s0(Bn,m)
(α0
−12α2
−12Q12m;Q12)∞Θ(α2
12Q12n−12m;Q12)
(α0
12α2
12Q−12m;Q12)∞Θ(α0
−12Q12n;Q12)
× 1ϕ1
(
0
α0
−12α2
−12Q12m+12;Q
12, α0
−12Q12n+12
)
= 0. (3.53)
In particular, setting
s0(An,m) = An,m, Bn,m = 0,
in (3.53), we obtain
1ϕ1
(
0
α0
12α2
12Q−12m+12;Q
12, α2
12Q12n−12m+12
)
(3.54)
=
(α2
12Q12n−12m+12;Q12)∞
(α0
12α2
12Q−12m+12;Q12)∞
1ϕ1
(
0
α2
12Q12n−12m+12;Q
12, α2
12α0
12Q−12m+12
)
.
Equation (3.54) corresponds to a specialization of Heine’s transform. Actually, by putting
a = b−1c, d = b−1z,
in Heine’s transform [34]
2ϕ1
(
a, b
c
; q, d
)
=
(a, bd; q)∞
(c, d; q)∞
2ϕ1
(
a−1c, d
bd
; q, a
)
,
we obtain
2ϕ1
(
b−1c, b
c
; q, b−1z
)
=
(b−1c, z; q)∞
(c, b−1z; q)∞
2ϕ1
(
b, b−1z
z
; q, b−1c
)
. (3.55)
Taking the limit b→∞ in (3.55) leads to
1ϕ1
(
0
c
; q, z
)
=
(z; q)∞
(c; q)∞
1ϕ1
(
0
z
; q, c
)
,
which is equivalent to (3.54).
Acknowledgements
The author would like to express sincere thanks to Professor T. Masuda for fruitful discussions
and valuable suggestions. I acknowledge continuous encouragement by Professors K. Kajiwara
and T. Tsuda. This work has been partially supported by the JSPS Research Fellowship.
References
[1] Gasper G., Rahman, M. Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Appli-
cations, Vol. 96, Cambridge University Press, Cambridge, 2004.
[2] Hamamoto T., Kajiwara K., Hypergeometric solutions to the q-Painlevé equation of type A
(1)
4 , J. Phys. A:
Math. Theor. 40 (2007), 12509–12524, nlin.SI/0701001.
[3] Hamamoto T., Kajiwara K., Witte N.S., Hypergeometric solutions to the q-Painlevé equation of type
(A1 + A′
1)
(1), Int. Math. Res. Not. 2006 (2006), Art. ID 84619, 26 pages, nlin.SI/0607065.
http://dx.doi.org/10.1017/CBO9780511526251
http://dx.doi.org/10.1017/CBO9780511526251
http://dx.doi.org/10.1088/1751-8113/40/42/S01
http://dx.doi.org/10.1088/1751-8113/40/42/S01
http://arxiv.org/abs/nlin.SI/0701001
http://dx.doi.org/10.1155/IMRN/2006/84619
http://arxiv.org/abs/nlin.SI/0607065
Hypergeometric τ Functions of the q-Painlevé Systems of Type (A2 +A1)(1) 15
[4] Joshi N., Kajiwara K., Mazzocco M., Generating function associated with the Hankel determinant formula
for the solutions of the Painlevé IV equation, Funkcial. Ekvac. 49 (2006), 451–468, nlin.SI/0512041.
[5] Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations
with rational coefficients. I. General theory and τ -function, Phys. D 2 (1981), 306–352.
[6] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with ra-
tional coefficients. II, Phys. D 2 (1981), 407–448.
[7] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with ra-
tional coefficients. III, Phys. D 4 (1981/82), 26–46.
[8] Kajiwara K., Kimura K., On a q-difference Painlevé III equation. I. Derivation, symmetry and Riccati type
solutions, J. Nonlin. Math. Phys. 10 (2003), 86–102, nlin.SI/0205019.
[9] Kajiwara K., Masuda T., A generalization of determinant formulae for the solutions of Painlevé II and
XXXIV equations, J. Phys. A: Math. Gen. 32 (1999), 3763–3778, solv-int/9903014.
[10] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., 10E9 solution to the elliptic Painlevé equation,
J. Phys. A: Math. Gen. 36 (2003), L263–L272, nlin.SI/0303032.
[11] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Point configurations, Cremona transformations
and the elliptic difference Painlevé equation, in Théories Asymptotiques et Équations de Painlevé, Semin.
Congr., Vol. 14, Soc. Math. France, Paris, 2006, 169–198, nlin.SI/0411003.
[12] Kajiwara K., Nakazono N., Tsuda T., Projective reduction of the discrete Painlevé system of type
(A2 + A1)
(1), Int. Math. Res. Not. 2010 (2010), Art. ID rnq089, 37 pages, arXiv:0910.4439.
[13] Kajiwara K., Noumi M., Yamada Y., A study on the fourth q-Painlevé equation, J. Phys. A: Math. Gen.
34 (2001), 8563–8581, nlin.SI/0012063.
[14] Kajiwara K., Ohta Y., Determinant structure of the rational solutions for the Painlevé IV equation,
J. Phys. A: Math. Gen. 31 (1998), 2431–2446, solv-int/9709011.
[15] Kajiwara K., Ohta Y., Satsuma J., Casorati determinant solutions for the discrete Painlevé III equation,
J. Math. Phys. 36 (1995), 4162–4174, solv-int/9412004.
[16] Kajiwara K., Ohta Y., Satsuma J., Grammaticos B., Ramani A., Casorati determinant solutions for the
discrete Painlevé-II equation, J. Phys. A: Math. Gen. 27 (1994), 915–922, solv-int/9310002.
[17] Masuda T., Hypergeometric τ -functions of the q-Painlevé system of type E
(1)
7 , SIGMA 5 (2009), 035,
30 pages, arXiv:0903.4102.
[18] Masuda T., Hypergeometric τ -functions of the q-Painlevé system of type E
(1)
8 , MI Preprint Series, 2009–12,
Kyushu University, 2009.
[19] Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras,
Cambridge Tracts in Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2000.
[20] Nakao S., Kajiwara K., Takahashi D., Multiplicative dPII and its ultradiscretization, Reports of RIAM
Symposium, No. 9ME-S2, Kyushu University, 1998, 125–130 (in Japanese).
[21] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, Vol. 223,
American Mathematical Society, Providence, RI, 2004.
[22] Noumi M., Yamada Y., Symmetries in the fourth Painlevé equation and Okamoto polynomials, Nagoya
Math. J. 153 (1999), 53–86, q-alg/9708018.
[23] Ohta Y., Nakamura A., Similarity KP equation and various different representations of its solutions, J. Phys.
Soc. Japan 61 (1992), 4295–4313.
[24] Okamoto K., Studies on the Painlevé equations. I. Sixth Painlevé equation PVI, Ann. Mat. Pura Appl. 146
(1987), 337–381.
[25] Okamoto K., Studies on the Painlevé equations. II. Fifth Painlevé equation PV, Japan. J. Math. (N.S.) 13
(1987), 47–76.
[26] Okamoto K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV,
Math. Ann. 275 (1986), 221–255.
[27] Okamoto K., Studies on the Painlevé equations. IV. Third Painlevé equation PIII, Funkcial. Ekvac. 30
(1987), 305–332.
[28] Quispel G.R.W., Roberts J.A.G., Thompson C.J., Integrable mappings and soliton equations, Phys. Lett. A
126 (1988), 419–421.
http://dx.doi.org/10.1619/fesi.49.451
http://arxiv.org/abs/nlin.SI/0512041
http://dx.doi.org/10.1016/0167-2789(81)90013-0
http://dx.doi.org/10.1016/0167-2789(81)90021-X
http://dx.doi.org/10.1016/0167-2789(81)90003-8
http://dx.doi.org/10.2991/jnmp.2003.10.1.7
http://arxiv.org/abs/nlin.SI/0205019
http://dx.doi.org/10.1088/0305-4470/32/20/309
http://arxiv.org/abs/solv-int/9903014
http://dx.doi.org/10.1088/0305-4470/36/17/102
http://arxiv.org/abs/nlin.SI/0303032
http://arxiv.org/abs/nlin.SI/0411003
http://dx.doi.org/10.1093/imrn/rnq089
http://arxiv.org/abs/0910.4439
http://dx.doi.org/10.1088/0305-4470/34/41/312
http://arxiv.org/abs/nlin.SI/0012063
http://dx.doi.org/10.1088/0305-4470/31/10/017
http://arxiv.org/abs/solv-int/9709011
http://dx.doi.org/10.1063/1.531353
http://arxiv.org/abs/solv-int/9412004
http://dx.doi.org/10.1088/0305-4470/27/3/030
http://arxiv.org/abs/solv-int/9310002
http://dx.doi.org/10.3842/SIGMA.2009.035
http://arxiv.org/abs/0903.4102
http://arxiv.org/abs/q-alg/9708018
http://dx.doi.org/10.1143/JPSJ.61.4295
http://dx.doi.org/10.1143/JPSJ.61.4295
http://dx.doi.org/10.1007/BF01762370
http://dx.doi.org/10.1007/BF01458459
http://dx.doi.org/10.1016/0375-9601(88)90803-1
16 N. Nakazono
[29] Quispel G.R.W., Roberts J.A.G., Thompson C.J., Integrable mappings and soliton equations. II, Phys. D
34 (1989), 183–192.
[30] Ramani A., Grammaticos B., Discrete Painlevé equations: coalescences, limits and degeneracies, Phys. A
228 (1996), 160–171, solv-int/9510011.
[31] Sakai H., Casorati determinant solutions for the q-difference sixth Painlevé equation, Nonlinearity 11 (1998),
823–833.
[32] Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations,
Comm. Math. Phys. 220 (2001), 165–229.
[33] Tsuda T., Tau functions of q-Painlevé III and IV equations, Lett. Math. Phys. 75 (2006), 39–47.
[34] Wadim Z., Heine’s basic transform and a permutation group for q-harmonic series, Acta Arith. 111 (2004),
153–164.
http://dx.doi.org/10.1016/0167-2789(89)90233-9
http://dx.doi.org/10.1016/0378-4371(95)00439-4
http://arxiv.org/abs/solv-int/9510011
http://dx.doi.org/10.1088/0951-7715/11/4/004
http://dx.doi.org/10.1007/s002200100446
http://dx.doi.org/10.1007/s11005-005-0037-3
http://dx.doi.org/10.4064/aa111-2-4
1 Introduction
2 q-PIII and q-PII
2.1 Hypergeometric solutions of q-PIII and q-PII
2.2 Projective reduction from q-PIII to q-PII
2.3 Birational representation of W"0365W((A2+A1)(1)) on the function
3 Hypergeometric functions of the q-Painlevé systems of type (A2+A1)(1)
3.1 Hypergeometric functions of q-PIII
3.2 Hypergeometric functions of q-PII
3.2.1 Hypergeometric functions of q-PII (I)
3.2.2 Hypergeometric functions of q-PII (II)
3.3 Relation between the hypergeometric functions of q-PIII and Heine's transform
References
|