κ-Deformed Phase Space, Hopf Algebroid and Twisting
Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion o...
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | Jurić, T., Kovačević, D., Meljanac, S. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2014
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146538 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | κ-Deformed Phase Space, Hopf Algebroid and Twisting / T. Jurić, D. Kovačević, S. Meljanac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Twist Quantization of String and Hopf Algebraic Symmetry
von: Asakawa, T., et al.
Veröffentlicht: (2010) -
κ-Deformations and extended κ-Minkowski spacetimes
von: Borowiec, A., et al.
Veröffentlicht: (2014) -
Gauge Theory on Twisted κ-Minkowski: Old Problems and Possible Solutions
von: Dimitrijević, M., et al.
Veröffentlicht: (2014) -
Deformation Quantization of Poisson Structures Associated to Lie Algebroids
von: Neumaier, N., et al.
Veröffentlicht: (2009) -
Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes
von: Ballesteros, A., et al.
Veröffentlicht: (2014)