Who's Afraid of the Hill Boundary?
The Jacobi-Maupertuis metric allows one to reformulate Newton's equations as geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We prove that a JM geodesic which comes sufficiently close to a regular point of the boundary contains pairs of conjugate points close...
Gespeichert in:
Datum: | 2014 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2014
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/146540 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Who's Afraid of the Hill Boundary?/ R. Montgomery // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146540 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465402019-02-10T01:25:02Z Who's Afraid of the Hill Boundary? Montgomery, R. The Jacobi-Maupertuis metric allows one to reformulate Newton's equations as geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We prove that a JM geodesic which comes sufficiently close to a regular point of the boundary contains pairs of conjugate points close to the boundary. We prove the conjugate locus of any point near enough to the boundary is a hypersurface tangent to the boundary. Our method of proof is to reduce analysis of geodesics near the boundary to that of solutions to Newton's equations in the simplest model case: a constant force. This model case is equivalent to the beginning physics problem of throwing balls upward from a fixed point at fixed speeds and describing the resulting arcs, see Fig. 2. 2014 Article Who's Afraid of the Hill Boundary?/ R. Montgomery // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 8 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J50; 58E10; 70H99; 37J45; 53B50 DOI:10.3842/SIGMA.2014.101 http://dspace.nbuv.gov.ua/handle/123456789/146540 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The Jacobi-Maupertuis metric allows one to reformulate Newton's equations as geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We prove that a JM geodesic which comes sufficiently close to a regular point of the boundary contains pairs of conjugate points close to the boundary. We prove the conjugate locus of any point near enough to the boundary is a hypersurface tangent to the boundary. Our method of proof is to reduce analysis of geodesics near the boundary to that of solutions to Newton's equations in the simplest model case: a constant force. This model case is equivalent to the beginning physics problem of throwing balls upward from a fixed point at fixed speeds and describing the resulting arcs, see Fig. 2. |
format |
Article |
author |
Montgomery, R. |
spellingShingle |
Montgomery, R. Who's Afraid of the Hill Boundary? Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Montgomery, R. |
author_sort |
Montgomery, R. |
title |
Who's Afraid of the Hill Boundary? |
title_short |
Who's Afraid of the Hill Boundary? |
title_full |
Who's Afraid of the Hill Boundary? |
title_fullStr |
Who's Afraid of the Hill Boundary? |
title_full_unstemmed |
Who's Afraid of the Hill Boundary? |
title_sort |
who's afraid of the hill boundary? |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146540 |
citation_txt |
Who's Afraid of the Hill Boundary?/ R. Montgomery // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 8 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT montgomeryr whosafraidofthehillboundary |
first_indexed |
2025-07-11T00:12:38Z |
last_indexed |
2025-07-11T00:12:38Z |
_version_ |
1837307303762591744 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 101, 11 pages
Who’s Afraid of the Hill Boundary?
Richard MONTGOMERY
Math Dept. UC Santa Cruz, Santa Cruz, CA 95064, USA
E-mail: rmont@ucsc.edu
URL: http://people.ucsc.edu/~rmont/
Received August 25, 2014, in final form October 28, 2014; Published online November 02, 2014
http://dx.doi.org/10.3842/SIGMA.2014.101
Abstract. The Jacobi–Maupertuis metric allows one to reformulate Newton’s equations as
geodesic equations for a Riemannian metric which degenerates at the Hill boundary. We
prove that a JM geodesic which comes sufficiently close to a regular point of the boundary
contains pairs of conjugate points close to the boundary. We prove the conjugate locus of
any point near enough to the boundary is a hypersurface tangent to the boundary. Our
method of proof is to reduce analysis of geodesics near the boundary to that of solutions
to Newton’s equations in the simplest model case: a constant force. This model case is
equivalent to the beginning physics problem of throwing balls upward from a fixed point at
fixed speeds and describing the resulting arcs, see Fig. 2.
Key words: Jacobi–Maupertuis metric; conjugate points
2010 Mathematics Subject Classification: 37J50; 58E10; 70H99; 37J45; 53B50
1 Results and motivation
One constructs the Jacobi metric ds2
JM of classical mechanics by fixing the total energy E of the
system and multiplying the kinetic energy metric ds2
K by the conformal factor
f = 2(E − V ), ds2
JM = fds2
K,
where V is the potential energy. It is well-known that the geodesics for this Jacobi–Maupertuis
metric (henceforth JM metric for short) are, up to reparameterization, exactly the solutions to
Newton’s equations having energy E. (See Proposition 1 below for a careful statement. See [1,
Theorem 3.7.7] for another discussion and a nice proof.) The domain of the Jacobi metric is the
domain in configuration space where this conformal factor is non-negative and is called the Hill
region:
H = {q : f(q) ≥ 0}.
The Hill region includes the Hill boundary (sometimes called the zero velocity surface) where
the conformal factor, and hence the metric, vanishes:
∂H = {q : f(q) = 0}.
A “regular point” q0 of the Hill boundary is one for which df(q0) 6= 0. Here is our main result.
Theorem 1. Any JM geodesic which comes sufficiently close to a regular point q0 of the Hill
boundary contains a pair of conjugate points close to q0 which are conjugate along a short arc
close to q0. In particular, such a geodesic fails to minimize JM length.
This theorem is a direct consequence of a structure theorem, Theorem 2 below, regarding the
conjugate locus of near-boundary points, and results from Seifert’s seminal paper [6] which we
recall in the next section.
rmont@ucsc.edu
http://people.ucsc.edu/~rmont/
http://dx.doi.org/10.3842/SIGMA.2014.101
2 R. Montgomery
Motivations. Two questions motivated this paper.
1. Can the calculus of variations, applied to the JM metric reformulation of mechanics,
uncover new results regarding the classical three-body problem? The direct method of the
calculus of variations breaks down at the Hill boundary since curves lying in the boundary
have zero JM length. A deeper understanding of the behaviour of near-boundary JM geodesics
seems necessary to the further development of JM variational methods in case where the Hill
boundary is not empty. For some results in celestial mechanics based on JM variational methods
in instances where the Hill boundary is not empty see [5] and [7] whin this direction
2. Does the fact that JM curvatures tend to positive infinity imply there are conjugate points
near the boundary? Let q be a point near a regular point of the Hill boundary and let y denote
its Riemannian distance from the boundary. The sectional curvatures K of two-plane through q
which contains the normal direction to the boundary tends to positive infinity like 1/y3 as y → 0.
The classical Bonnet–Meyer’s estimate says that if the curvatures K along a geodesic through q
are greater than or equal to a positive constant K0 then there must be a point conjugate to q
along the geodesic and lying within π/
√
K0 from q. This suggests the existence of conjugate
points within y3/2 from our point q. However, the JM distance of q to the boundary is also
of order y3/2 for small y. The two distances are of the same order. These naive estimates
do not tell us if Bonnet–Meyers “wins” to beat out the closeness of the boundary by creating
a conjugate point before we have “reflected” off the boundary and left the region in which the
Bonnet–Meyers curvature estimate holds. Theorem 1 asserts that, indeed, Bonnet–Meyers wins.
3. The recent work [2] claims that the harmonic oscillator, when it is reformulated in terms of
JM geodesics, has positive Lyapunov exponents. This surprise, and trying to better understand
it, was the seed that planted this paper.
2 Mechanics and Seifert’s coordinates
By Newton’s equations on a manifold M we mean a system of second-order differential equations
of the form
∇γ̇ γ̇ = −∇V (γ). (1)
Here ∇ is the Levi-Civita connection associated with a fixed Riemannian metric ds2
K on M .
(The subscript ‘K’ is for ‘kinetic’.) V is a chosen smooth function on M called the “potential”.
The total energy
H =
1
2
〈γ̇, γ̇〉γ + V (γ)
is constant along any solution to (1). The inner product is the one defined by the metric ds2
K.
Fix a value H = E for this energy and form the conformal factor
f = 2(E − V )
and the resultant Jacobi–Maupertuis metric
ds2
JM = fds2
K. (2)
The following well-known proposition connects solutions to (1) with Jacobi geodesics.
Proposition 1. Solutions to (1) with energy E are, after reparameterization, geodesics for the
metric (2) which lie inside the Hill region f ≥ 0 and touch the Hill boundary f = 0 in at
most two points. Conversely, any geodesic for the Jacobi metric lying inside the Hill region and
touching the boundary in no more than two points is a reparameterization of a solution to (1).
Who’s Afraid of the Hill Boundary? 3
For a proof see [1, Theorem 3.7.7].
Special care must be taken with geodesics at the Hill boundary. We have f = 2(E−V (γ(t)) =
‖γ̇‖2) along solutions γ(t) to (1). It follows that such a solution hits the boundary at a time t0
if and only if γ̇(t0) = 0. We call such a solution a “brake orbit”. The point q0 = γ(t0) where
the solution hits the boundary is called the “brake point” since it has instantaneously stopped.
Uniqueness of solutions to (1) shows that a brake orbit retraces its own path when we pass the
brake instant: γ(t0 + t) = γ(t0 − t). When we speak of Jacobi geodesics which hit the Hill
boundary we mean exactly these brake orbits, up to reparameterization.
If a brake orbit hits the Hill boundary at two distinct points then it is periodic, shuttling back
and forth forever between these two brake points, with Newtonian period twice the Newtonian
time it takes to get from one point to the other. Conversely, any periodic orbit having one brake
point must have another distinct brake point. Seifert’s primary aim in [6] was to establish the
existence of such periodic brake solutions.
Suppose that the brake point q0 is a regular point of the boundary: df(q0) 6= 0, i.e. ∇V (q0) 6=
0. Then Seifert proved that for small ε the sub-arc γ([t0, t0 + ε]) of γ is a minimizing JM
geodesic which realize the JM distance from γ(t0 + ε) to the boundary. A Taylor expansion
yields γ(t0 +h) = q0− 1
2h
2∇V (q0)+O(h4) showing that this brake orbit, as a non-parameterized
curve, is smooth and intersects the boundary orthogonally at the brake point.
Seifert solved Newton’s equations with initial conditions (γ, γ̇) = (q, 0) on the Hill boundary
to form a system of coordinates (x, y) with x = (x1, . . . , xn−1), xi, y ∈ R and n = dim(M) for
which the y-curves xi = const, y = t are reparameterized brake orbits with brake instant t = 0.
In these coordinates the Hill boundary is given by y = 0 and the xi coordinatize points on the
Hill boundary. We center the coordinates at a regular point q0 of the boundary, meaning that q0
has coordinates (0, 0).
We will call such coordinates “cylinder coordinates” or “Seifert coordinates”. When the
coordinate domain has the form W × [0, ε] we call the resulting sets in the manifold “cylinder
neighborhoods” of height ε. The “roof” of the cylinder is the locus y = ε. The “vertical lines”
are the images of {q∗}× [0, ε] and are brake orbits. We will say that the direction − ∂
∂y is ‘straight
down’. It is the tangent direction field to the brake orbits headed to the boundary.
Properties of Seifert coordinates. We recall some properties of Seifert’s cylinder coordi-
nates. Within the five bullet points
(1) The JM distance of a point to the Hill boundary is y3/2 ([6], the displayed equation just
preceding his equation (46)).
(2) The JM metric is given by the coordinate expression
ds2
JM = ydy2 + yf(x, y)
(∑
dx2
i +
∑
hij(x, y)dxidxj
)
, (3)
where f(0, 0) = 1 and hij(x, y) = O(x2 + y2) [6, equation (46)].
(3) For any sufficiently small cylinder neighborhood A of q0 and any δ smaller than 45 degrees
there is a smaller cylinder neighborhood B of q0 such that every geodesic which enters
into B must exit and leave A through the roof of A, making an angle of less than δ with
the vertical line as it enters and leaves (see Fig. 1).
(4) Along any of the geodesics γ(t) = (x(t), y(t)) described in the previous item, the height
function y(t) is strictly convex relative to Newtonian time t, with a unique local mini-
mum [6, Fig. 3, also Theorem 1].
(5) If a geodesic enters into a sufficiently small cylinder neighborhood of height h then it
leaves that neighborhood within a short Euclidean time of at most C
√
h where C is any
constant greater than 2
√
2/‖∇V (q0)‖ [6, Fig. 3 and Theorem 1].
4 R. Montgomery
Figure 1. A geodesic which enters into B must enter and leave through the roof of A at a steep upward
angle.
Items (3) and (4) are not proved exactly as stated in Seifert. We give proofs in Section 5
below.
For q a point in a cylinder set A let q∗ ∈ ∂H∩A denote the brake point along the brake orbit
connecting q to the boundary. In terms of cylinder coordinates, if q = (x, y) then q∗ = (x, 0).
Let C(q) ⊂ H̄∩A denote the first conjugate locus to q for the restriction of the JM metric to A.
The points of C(q) are the points conjugate to q along geodesic arcs lying in A.
Theorem 2 (structure theorem). Let A be a cylinder set whose height ε is sufficiently small.
Then the conjugate locus C(q) ⊂ A of any point q ∈ A has the following properties. C(q) is
a smooth hypersurface which intersects the Hill boundary tangentially at q∗ and in no other point.
As a singularity of the exponential map, C(q) represents the fold singularity. Every geodesic arc
through q in A lies entirely on the side of C(q) closest to q. With the single exception of the brake
orbit [q, q∗], if such a geodesic arc touches C(q) then it touches it tangentially. Every geodesic
through q whose initial tangent vector v is sufficiently close to the “straight down” direction
touches C(q) (see Fig. 2).
Remark 1. Compare this theorem with part (C) of Theorem 3.3 of [8] where Warner shows
fold-type conjugate loci occur stably and generically for Riemannian metrics.
Remark 2. If we take a geodesic which starts at q and touches C(q) and extend it slightly
beyond C(q) then it will fail to minimize. The extent to which it fails to minimize is measured
by the index of Morse theory. This index is 1 for all the geodesics of the structure theorem, this
being the dimension of the kernel described towards the end of Appendix B in the paragraph
Fold.
Let us continue with the notation of Theorem 2. If v is a tangent vector to q ∈ A then we
say that v “points downward” if dy(v) < 0. Consider the cone of downward-pointed velocities
v ∈ TqH with the additional property that the geodesic with initial condition (q, v) touches the
conjugate locus C(q) to q at a point c ∈ C(q) below q: y(c) < y(q). Call this set of vectors v
the “downward conjugate cone” at q and denote it by DC(q).
Theorem 3. The downward conjugate cone DC(q) is an open cone containing the brake direc-
tion. As q → q∗ along the brake segment [q, q∗], the cone DC(q) limits to the open downward
pointed cone consisting of all vectors v whose angle with the straight down direction is less than
45 degrees.
Who’s Afraid of the Hill Boundary? 5
3 Throwing balls: the model example
The idea of our proof is to reduce the study of geodesics near the Hill boundary to that of
a model example for which the geodesics can be found exactly. The model is
ds2
falling = y
(
dx2 + dy2
)
, y ≥ 0. (4)
In the model f = y, ds2
K = dx2 + dy2, V (x, y) = −1
2y and E = 0. The corresponding Newton’s
equations are
ẍ = 0, ÿ = 1/2 (5)
with energy
H(x, y, ẋ, ẏ) =
1
2
(
ẋ2 + ẏ2
)
− 1
2
y.
Freshman physics. The affine change of variables z = h0−2gy, x = x turns these Newton’s
equations into the equation z̈ = −g, ẍ = 0 which governs the height z of a ball thrown under
the influence of the earth’s constant gravitational field of strength g, pointed down. This is the
well-studied problem of ballistics from the 1st week or so of most beginning physics courses. We
are throwing balls or shooting cannons from a fixed point q with z(q) < h0. The Hill region
f ≥ 0 is z ≤ h0. The speed of our throws at a fixed point are all equal and are such that the
maximum possible height we can reach, the height reached if we hurl our ball straight up, is the
height h0. Turn Fig. 2 upside down to see a familiar picture of many balls being thrown at the
same speed from a fixed point to form a sprinkler pattern, or if you prefer, the arcs of light seen
in a fireworks display.
Figure 2. Geodesics leaving a point and headed toward the boundary in the model example. Turn the
figure upside down to see the trace of thrown balls, a sprinkler, or fireworks.
The general solution to our model Newton’s equations (5) is the family of parabolas:
x = x0 + v1t, y = y0 + v2t−
1
4
t2. (6)
The parameters (x0, y0, v1, v2) are the initial conditions at time t = 0 for our differential equa-
tions (5). The energy along any one member of this family of solutions is H(x0, y0, v1, v2) =
1
2(v2
1 + v2
2) − 1
2y0. We want this energy to be zero which means that v2
1 + v2
2 = y0 so that the
allowable velocities (v1, v2) through P0 vary over a circle. For each velocity in this circle we get
a parabola through P0. The envelope of this one-parameter family of parabolas is the conjugate
locus.
6 R. Montgomery
Lemma 1. The envelope of the geodesics through P0 = (x0, y0) is the conjugate point locus to P0
for the model metric (equation (4)) and is the parabola y = 1
4y0
(x−x0)2 tangent to the boundary
y = 0 at (x0, 0). As a singularity, the envelope realizes the simplest of the stable singularities of
maps R2 → R2, the fold singularity, whose normal form near (0, 0) is (u, v) 7→ (u, v2). (See [3,
Theorems 4.4 and 4.5] for results on the fold singularity.)
We prove the lemma in Appendices A and B. In Appendix A we review the definition of
‘envelope’ and show that the envelope is indeed the conjugate locus. In Appendix B we compute
our specific envelope and show that the map for which it is a singularity is a simple fold. More
important than the exact formula for the envelope given in the lemma is the fact that it represents
a stable singularity. We also review the definition of the fold and of a stable singularity in
Appendix B. We urge the reader to see the discussion in [4], especially Fig. 5.6 for another good
picture and a discussion of this model example.
3.1 Higher dimensions
To place the model example (equation (4)) in higher dimensions, take x = (x1, . . . , xn−1) ∈ Rn−1
and work in the upper half space y ≥ 0 of Rn = Rn−1×R with coordinates (x, y). Understand dx2
to mean the Euclidean metric
∑
dx2
i . Euclidean rotations about the vertical axes x = x0 are
isometries for the model metric. The conjugate locus is obtained by taking the envelope just
worked out in the lemma above for the planar case and rotating it about the vertical axis
through P0 to obtain a hypersurface of revolution.
The lemma above holds as is. In the equation for the conjugate locus we interpret (x− x0)2
to mean ‖x − x0‖2 :=
∑
(xi − xi0)2. The singularity is again a fold. The normal form for the
fold map from Rn → Rn remains the same, remembering to write (x, y) ∈ Rn−1 × R = Rn.
4 Reduction to the model example
Proof of Theorem 2, the structure theorem. Scale Seifert’s cylinder coordinates by (x, y)
→ (εx, εy). Here x ∈ Rn−1, y ∈ R, y ≥ 0 and ε > 0 is sufficiently small. We ask the reader to
take a glance at Seifert’s metric normal form (equation (3)) and the function f there. Taylor
expand f about the origin: f(x, y) = 1+ax+by+O(x2 +y2) and write f1(x, y) = ax+by for the
linear term. In the rescaled coordinates Seifert’s metric normal form (equation (3)) becomes:
ds2
JM = ε3y
(
dy2 +
(
1 + εf1 +O
(
ε2
)(∑
dx2
i +
∑
ε2hij(x, y)dxidxj
)))
= ε3y
(
dy2 + dx2 + εf1dx
2 +O
(
ε2
))
where the O(ε2) term only contains dxi, dxj terms (no dy’s). Dividing a metric by a positive
constant does not change its geodesics. Divide our metric by ε3 to get the metric:
ds2 = y
(
dy2 + dx2 + εf1dx
2 +O
(
ε2
))
,
whose conjugate locus is identical (after rescaling) to that of the original Seifert form.
Now view this expression for ds2 as an instance of the Jacobi–Maupertuis principle. In other
words take the energy E to be 0 so that the overall conformal factor y corresponds to the
same potential V = −(1/2)y as in our model example. View the term in parenthesis as the
“underlying metric”. Now play the JM game in reverse, to write out Newton’s equations, in
Hamiltonian form, based on the structure of this metric. The kinetic energy metric part of our
model has changed from dy2 +dx2 to dy2 +(1+ εf1)dx2 +O(ε2) where the O(ε2) error term does
not involve dy but only dxidxj terms. Set y = x0 momentarily so that we can write the metric
tensor of this metric in the uniform manner
∑
gabdxadxb with a, b now running from 0 to n− 1.
Who’s Afraid of the Hill Boundary? 7
The Hamiltonian whose Hamilton’s equations are Newton’s equations is 1
2(
∑
gabpapb−y) where
gab is the inverse to the matrix of metric coefficients gab. We see that
(g)ab =
(
1 0
0 I + εf1I +O
(
ε2
))
from which it follows that the inverse matrix is
gab =
(
1 0
0 I − εf1I +O
(
ε2
))
yielding the Hamiltonian
Hε =
1
2
(
p2
x + p2
y − εf1p
2
x +O
(
ε2
))
− 1
2
y,
where p2
x means
∑
p2
i . This Hamiltonian is a small order ε perturbation of the Hamiltonian
H0 =
1
2
(
p2
x + p2
y
)
− 1
2
y
for our model problem, solved in the last section.
Write (x, y, p) 7→ Φε
t(x, y, p) for the Hamiltonian flow of our perturbed Hamiltonian Hε with
the unperturbed model flow being Φ0
t . Since Hε is within Cε of H0 in the Ck topology over
compact sets (any k up to the smoothness of the original problem), we have that their associated
flows are also close, provided we restrict to compact subsets. In other words, if (x, y, p; t) are
confined to vary over a compact subset of K ⊂ Rn × Rn × R, then the restrictions of the
associated Hamiltonian flows Φε
t and Φ0
t are O(ε) close in the Ck topology. (Yes, k, not k − 1.
We get k → k − 1 when we differentiate H to get the Hamiltonian vector field. But we add 1
back when we integrate the vector field to get the flow.) Now we worked out the details of the
unperturbed flow in in the last section (equation (6)).
Why can we restrict to compact sets? The geodesics for the model problem all leave a given
cylinder set in a bounded time T0, and hence the same is true of the perturbed problem, with
a perhaps somewhat bigger T0, say 2T0 to be safe. Fix the point q = (x0, y0) (in rescaled
variables). The perturbed geodesics through q = (x0, y0) are obtained by solving Hamilton’s
equations for p = (px, py) lying in the sphere Hε(x0, y0, p) = 0. Thus, in computing the geodesics
and conjugate locus we need only vary p and t over a compact set of the form Sn−1 × [0, 2T0].
We want to compare the singular loci of the map (p, t) 7→ π(Φε
t(x0, y0, p)) to that of the unper-
turbed map (p, t) 7→ π(Φ0
t (x0, y0, p)). Here π(x, y, p) = (x, y) is the projection onto configuration
space. The unperturbed map (p, t) 7→ π(Φ0
t (x0, y0, p)) is the subject of Lemma 1 of the previous
section and is structurally stable. Hence there is an ε0 > 0 sufficiently small so that for all
ε < ε0 the singularities of (p, t) 7→ π(Φε
t(x, y, p)) are all folds (and are close to those of π ◦ Φ0
t ).
The flows being within order ε we know that the maps (p, t) 7→ Φε
t(x, y, p) and (p, t) 7→
Φ0
t (x, y, p) are C2 close for ε sufficiently small. Take ε small enough that structural stability
holds: the singular locus of the perturbed map is a fold. This locus is our conjugate locus.
The conjugate locus must touch the Hill boundary at the brake orbit through q as before.
Since the only geodesic through q touching the Hill boundary is the brake orbit, this is the
only point where C(q) intersects the boundary. Since the conjugate locus and the boundary are
both smooth hypersurfaces, and C(q) lies entirely on one side of the boundary, it must touch it
tangentially. �
8 R. Montgomery
5 Proof of the Seifert properties (3)–(5) and Theorem 3
We begin with the model problem, taking z = h0 − gy so we can use the ball-throwing analogy.
The steeper the angle of the throw, the closer we get to the Hill boundary z = h0 and only the
straight-up throw touches the boundary. The cut-off angle of 45 degrees is angle of maximal
horizontal throw: at a fixed speed this is the upward angle to throw a ball so as to achieve the
maximum horizontal distance before the ball hits the ground again at z = z0. Any higher angle
and the ball drops short of the 45 degree throw, and the corresponding arc hits the conjugate
locus before the ball hits the ground, i.e. closer to the Hill boundary then when we started. (Any
lower angle and the ball hits the ground before it hits the conjugate locus, and hits the ground
short of the 45 degree throw.) Thus if the angle of throw with the vertical is less than 45 degrees
then the point where the geodesic hits the conjugate locus C(q) is closer to the Hill boundary
than the starting point q.
Proof of Seifert properties (3), (4), and (5). Properties (3), (4) and (5) above regarding
the Seifert coordinates are easily verified for the model problem. The reader can work out precise
algebraic relations relating angles of steepness to heights. The conditions involved in the three
properties are open conditions in the C2-topology on curves. The real problem is an order ε
perturbation of the model problem as measured in the C1-topology on the space of vector fields.
Consequently the geodesics for the real problem lie within an ε-C2 neighborhood of those of the
model problem. Consequently these properties continue to hold for the real problem, provided
we take ε small enough. The precise constants involved will need to be relaxed a bit. The smaller
we take ε, the closer we are to being able to use the same algebraic relations which the reader
may have worked out in the model problem.
Property (3). Let us see the details of this argument for property (3). In the unperturbed
model example, all the geodesics are parabolas. A bit of algebra shows that they can be written
y − ym = 1
ym
(x − xm)2 where the vertex of the parabola, which is the minimum value of y lies
at (xm, ym). One then computes that |dy/dx| ≥ 1 provided |x − xm| ≥ 1
2ym which is to say
y ≥ 5
4ym. In other words, once we reach a height of λym or greater, λ > 5/4 along the parabola,
the tangent line to this parabola is less than 45 degrees from the vertical.
It follows that if we take any constant λ > 5/4 then there is an ε sufficiently small, such
that any geodesic which enters into the cylinder neighborhood of height ε1 < ε will be leaving
through the roof of the cylinder of height λε and with a tangent direction to the vertical of angle
45 degrees or less. The angle of the tangent with the vertical in the model parabolas decreases
monotonically with their height, so the same is true of the perturbed example, for ε sufficiently
small. We can increase λ so as to guarantee that this angle is, say, 42 degrees, for example.
The constant in property (5) is verified by rewriting the model problem with a constant g:
ÿ = g and observing that g corresponds to the length of the force, or gradient of V , and then
doing a bit of algebra and scaling. �
Proof of Theorem 3. To prove Theorem 3, recall, as described a few paragraphs up, that in
the model problem the downward pointed cone DC(q) is the cone of vectors making an angle of
45 degrees with respect to the vertical, regardless of the initial point q = (x0, y0). The real case
is a small perturbation of the model case with the size of the perturbation tending to zero as we
tend to the boundary. �
6 Proof of main theorem
Proof. Consider the regular point q0 of the boundary together with cylindrical neighborhoods
centered on q0 for which the properties of Seifert hold.
Who’s Afraid of the Hill Boundary? 9
Now by property (3) any geodesic which enters into the cylinder of height ε1 must leave
through the roof of a cylinder of height λε1 at an angle closer to 42 degrees to the vertical.
Here λ a fixed constant, somewhat bigger than 5/4. (We could have taken any degree less
than 45 in place of 42 degrees.) By Theorem 3, for ε1 sufficiently small, these geodesic arcs all
have conjugate pairs q1, q2 with q1 being at height y = λε1 and with q2 being at a lower height
y < λε1. We refer the reader again to Fig. 1.
We now simply insist that our geodesics enter the cylinder of height ε1 about q0. Any such
geodesic is of the type described in the previous paragraph. We are guaranteed our conjugate
pair along this geodesic. �
A Envelopes and conjugate locus
A k-parameter family of immersed curves on a manifold M is a smooth map Γ : X × R → M
where, for each x ∈ X, the curve cx(·) = Γ(x, ·) is immersed, and where X is a smooth k-
dimensional manifold. The envelope of the family is its set of critical values.
According to the chain rule, if Ψ : X × R → X × R is any diffeomorphism, then the set of
criticial values of Γ and Γ ◦ Ψ are identical. A reparameterization of the k-parameter family
is a particular kind of diffeomorphism of the form Ψ(x, t) = (x, τ(x, t)). Thus each curve cx
has been reparameterized by a new parameter s = τ(x, t). The envelope (critical values) of the
original family Γ and the reparameterized family Γ ◦Ψ−1 are equal.
We apply these considerations to the exponential map of Riemannian geometry. The conju-
gate locus of a point q is the set of critical points of the exponential map exp : TqM →M based
at q. Recall that exp(v) = γ(1) is the time 1 end point of the unique geodesic γ(t) through q
having initial conditions γ(0) = q, γ̇(0) = v. One proves that γ(t) = exp(tv). It follows that
upon using polar coordinates for TqM , by writing vectors as v = sω, with ω ∈ Sn−1 ⊂ TqM
a unit length vector, we can think of the exponential map as an (n − 1)-parameter family of
curves: Γ : Sn−1 × R → M ; Γ(ω, s) = exp(sω). (The parameter s is arclength.) Thus the
conjugate locus of q is the envelope of this (n−1)-parameter family of geodesics through q. The
discussion on reparameterization invariance above holds, showing that whether we compute the
conjugate locus relative to arclength parameterization s, or by Newtonian-time as afforded by
Proposition 1, we get the same result for the envelope of curves. The envelope is the conjugate
locus.
Remark about the origin. Some thought needs to be applied to the case s = 0 where
polar coordinates break down, i.e fails to be a diffeomorphism. But the exponential map is
known to be a diffeomorphism at v = 0, so we exclude the point q = exp(0v) as being in the
conjugate locus.
B Computing the envelope
Proof of Lemma 1. We have found it helpful to put back in the constant gravitational acce-
leration g so that our equations are ẍ = 0, ÿ = g with general solution
x = x0 + v1t, y = y0 − v2t+
g
2
t2
and energy
E =
1
2
(
v2
1 + v2
2
)
− gy0 = 0 or v2
1 + v2
2 = 2gy0.
We parameterize so the 1-parameter family of solutions passing through P0 = (x0, y0) at time t
by an angle θ according to:
v1 =
√
2gy0 sin(θ), v2 =
√
2gy0 cos(θ).
10 R. Montgomery
Subsitute this expression for v1, v2 into the general solution to obtain the explicit one-parameter
family Γ(θ, t) = (x(θ, t), y(θ, t)). Compute dx and dy in terms of θ, t, dθ, dt to arrive at
dx ∧ dy = t(2gy0 − v2gt)dt ∧ dθ.
It follows that the critical points of the map Γ are defined by t = 0 and 2gy0 − v2gt = 0. We
ignore the singularity at t = 0 as a coordinate singularity. See the final remark of the last
appendix. The critical point locus is v2t = 2y0. (Remember v2 = v2(θ) as above.) Plugging this
relation into the general solution and using v2
1 = 2gy0− v2
1 we find, after some algebra, that the
envelope of the family, being the Γ-image of the set of critical points, is
y =
1
4y0
(x− x0)2,
as claimed.
The Jacobian of Γ is
dΓ =
(
v1 v2t
−v2 + gt v1t
)
.
From this expression we verify, after a bit of algebra, that the tangent to the envelope at a point
Γ(θ, t) is indeed ∂Γ
∂t , the tangent to the corresponding curve t 7→ Γ(θ, t). The direction of
this tangency is (1, 1
2y0
v1t) in the (x, y)-plane. Back in the domain of Γ it is the vector (1, 0)
corresponding to the tangent vector ∂
∂t . This computation fails at the brake point since the
tangent to the brake curve t 7→ Γ(0, t) is zero at the brake instant. Special considerations are
required there and are supplied in a few paragraphs.
Fold. The condition that a smooth map F : Rn → Rn represents a fold singularity is that
the set of critical points forms a smooth hypersurface, that along this hypersurface the rank
of dF is n− 1, and that the kernel of dF is transverse to the tangent space to the hypersurface.
We have already computed the tangent space to the envelope everywhere except at the brake
point. At a point of the envelope the rows of dΓ must be linearly dependent. (Both rows are
nonzero for t 6= 0.) We read off from our expression for dΓ that the kernel of dΓ at a point
of the envelope is then the span of (v2t,−v1) = (2y0,−v1) which is the same as the span of
(1,−v1/2y0) This establishes that the map is a fold away from the brake point (x0, 0).
To establish that the map Γ is a fold at the brake point we can Taylor expand its components.
For simplicity, set g = 1/2 now and tb = 2
√
y0 so that the brake point occurs when (θ, t) = (0, tb).
Set t = tb + h and think of θ, h as small. We compute
x = 2y0θ +O(θh), y =
1
4
h2 + y0θ
2 +O
(
θ2h
)
almost the normal form for a fold. The kernel of dΓ is the ∂
∂h direction, which is also the ∂
∂t
direction. The envelope in the θh coordinates is given by h = 0 plus higher order terms, i.e. the
envelope’s tangent at the brake point is spanned by ∂
∂θ . The kernel of dΓ is transverse to the
tangent to the envelope even at the brake point. The map is still a fold at the brake point. �
On stable maps. A singularity for a map is a map germ near a critical point. The singularity
is called “stable” if whenever any map F : M → N realizes this germ (is diffeomorphic to it),
then there is an ε-neighborhood about F in the Ck-topology on the space of maps (some k > 0)
such that any map G in this neighborhood is diffeomorphic to F in some neighborhood of the
critical point. That is to say, there are diffeomorphisms ψ : N → N,φ : M → M so that
G = ψ ◦ F ◦ φ−1 in a neighborhood of the critical point. The Morse lemma asserts that Morse
functions are stable. The simplest stable singularity of maps from manifolds M , N of the same
dimension are the fold singularities. See [3] for more on the basics of singularity theory.
Who’s Afraid of the Hill Boundary? 11
Acknowledgements
I thank Mark Levi and Mikhail Zhitomirskii for helpful e-mail conversations. I acknowledge
NSF grant DMS-1305844 for support.
References
[1] Abraham R., Marsden J.E., Foundations of mechanics, second edition ed., Benjamin/Cummings Publishing
Co., Inc., Reading, Mass., 1978.
[2] Cuervo-Reyes E., Movassagh R., On geometrical aspects of dynamical stability, arXiv:0811.0126.
[3] Golubitsky M., Guillemin V., Stable mappings and their singularities, Graduate Texts in Mathematics,
Vol. 14, Springer-Verlag, New York – Heidelberg, 1973.
[4] Levi M., Classical mechanics with calculus of variations and optimal control. An intuitive introduction,
Student Mathematical Library, Vol. 69, Amer. Math. Soc., Providence, RI, 2014.
[5] Moeckel R., A variational proof of existence of transit orbits in the restricted three-body problem, Dyn.
Syst. 20 (2005), 45–58.
[6] Seifert H., Periodische Bewegungen mechanischer Systeme, Math. Z. 51 (1948), 197–216.
[7] Soave N., Terracini S., Symbolic dynamics for the N -centre problem at negative energies, Discrete Contin.
Dyn. Syst. 32 (2012), 3245–3301, arXiv:1201.0280.
[8] Warner F.W., The conjugate locus of a Riemannian manifold, Amer. J. Math. 87 (1965), 575–604.
http://arxiv.org/abs/0811.0126
http://dx.doi.org/10.1080/14689360512331332983
http://dx.doi.org/10.1080/14689360512331332983
http://dx.doi.org/10.1007/BF01291002
http://dx.doi.org/10.3934/dcds.2012.32.3245
http://dx.doi.org/10.3934/dcds.2012.32.3245
http://arxiv.org/abs/1201.0280
http://dx.doi.org/10.2307/2373064
1 Results and motivation
2 Mechanics and Seifert's coordinates
3 Throwing balls: the model example
3.1 Higher dimensions
4 Reduction to the model example
5 Proof of the Seifert properties (3)–(5) and Theorem 3
6 Proof of main theorem
A Envelopes and conjugate locus
B Computing the envelope
References
|