Particle Motion in Monopoles and Geodesics on Cones
The equations of motion of a charged particle in the field of Yang's SU(2) monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle R⁸∖{0}→R⁵∖{0} obtained by radially extending the Hopf fibration S⁷→S⁴, and solved by elementary methods...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146546 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Particle Motion in Monopoles and Geodesics on Cones/ M. Mayrand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146546 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1465462019-02-10T01:25:03Z Particle Motion in Monopoles and Geodesics on Cones Mayrand, M. The equations of motion of a charged particle in the field of Yang's SU(2) monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle R⁸∖{0}→R⁵∖{0} obtained by radially extending the Hopf fibration S⁷→S⁴, and solved by elementary methods. The main result is that for every particle trajectory r:I→R⁵∖{0}, there is a 4-dimensional cone with vertex at the origin on which r is a geodesic. We give an explicit expression of the cone for any initial conditions. 2014 Article Particle Motion in Monopoles and Geodesics on Cones/ M. Mayrand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 34A26; 53B50 DOI:10.3842/SIGMA.2014.102 http://dspace.nbuv.gov.ua/handle/123456789/146546 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The equations of motion of a charged particle in the field of Yang's SU(2) monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle R⁸∖{0}→R⁵∖{0} obtained by radially extending the Hopf fibration S⁷→S⁴, and solved by elementary methods. The main result is that for every particle trajectory r:I→R⁵∖{0}, there is a 4-dimensional cone with vertex at the origin on which r is a geodesic. We give an explicit expression of the cone for any initial conditions. |
format |
Article |
author |
Mayrand, M. |
spellingShingle |
Mayrand, M. Particle Motion in Monopoles and Geodesics on Cones Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Mayrand, M. |
author_sort |
Mayrand, M. |
title |
Particle Motion in Monopoles and Geodesics on Cones |
title_short |
Particle Motion in Monopoles and Geodesics on Cones |
title_full |
Particle Motion in Monopoles and Geodesics on Cones |
title_fullStr |
Particle Motion in Monopoles and Geodesics on Cones |
title_full_unstemmed |
Particle Motion in Monopoles and Geodesics on Cones |
title_sort |
particle motion in monopoles and geodesics on cones |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146546 |
citation_txt |
Particle Motion in Monopoles and Geodesics on Cones/ M. Mayrand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 35 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT mayrandm particlemotioninmonopolesandgeodesicsoncones |
first_indexed |
2025-07-11T00:13:12Z |
last_indexed |
2025-07-11T00:13:12Z |
_version_ |
1837307314534612992 |