Particle Motion in Monopoles and Geodesics on Cones

The equations of motion of a charged particle in the field of Yang's SU(2) monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle R⁸∖{0}→R⁵∖{0} obtained by radially extending the Hopf fibration S⁷→S⁴, and solved by elementary methods...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Mayrand, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146546
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Particle Motion in Monopoles and Geodesics on Cones/ M. Mayrand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146546
record_format dspace
fulltext
spelling irk-123456789-1465462019-02-10T01:25:03Z Particle Motion in Monopoles and Geodesics on Cones Mayrand, M. The equations of motion of a charged particle in the field of Yang's SU(2) monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle R⁸∖{0}→R⁵∖{0} obtained by radially extending the Hopf fibration S⁷→S⁴, and solved by elementary methods. The main result is that for every particle trajectory r:I→R⁵∖{0}, there is a 4-dimensional cone with vertex at the origin on which r is a geodesic. We give an explicit expression of the cone for any initial conditions. 2014 Article Particle Motion in Monopoles and Geodesics on Cones/ M. Mayrand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 34A26; 53B50 DOI:10.3842/SIGMA.2014.102 http://dspace.nbuv.gov.ua/handle/123456789/146546 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The equations of motion of a charged particle in the field of Yang's SU(2) monopole in 5-dimensional Euclidean space are derived by applying the Kaluza-Klein formalism to the principal bundle R⁸∖{0}→R⁵∖{0} obtained by radially extending the Hopf fibration S⁷→S⁴, and solved by elementary methods. The main result is that for every particle trajectory r:I→R⁵∖{0}, there is a 4-dimensional cone with vertex at the origin on which r is a geodesic. We give an explicit expression of the cone for any initial conditions.
format Article
author Mayrand, M.
spellingShingle Mayrand, M.
Particle Motion in Monopoles and Geodesics on Cones
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Mayrand, M.
author_sort Mayrand, M.
title Particle Motion in Monopoles and Geodesics on Cones
title_short Particle Motion in Monopoles and Geodesics on Cones
title_full Particle Motion in Monopoles and Geodesics on Cones
title_fullStr Particle Motion in Monopoles and Geodesics on Cones
title_full_unstemmed Particle Motion in Monopoles and Geodesics on Cones
title_sort particle motion in monopoles and geodesics on cones
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146546
citation_txt Particle Motion in Monopoles and Geodesics on Cones/ M. Mayrand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 35 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT mayrandm particlemotioninmonopolesandgeodesicsoncones
first_indexed 2025-07-11T00:13:12Z
last_indexed 2025-07-11T00:13:12Z
_version_ 1837307314534612992