Invariant Poisson Realizations and the Averaging of Dirac Structures

We describe an averaging procedure on a Dirac manifold, with respect to a class of compatible actions of a compact Lie group. Some averaging theorems on the existence of invariant realizations of Poisson structures around (singular) symplectic leaves are derived. We show that the construction of cou...

Full description

Saved in:
Bibliographic Details
Date:2014
Main Authors: Vallejo, J.A., Vorobiev, Y.
Format: Article
Language:English
Published: Інститут математики НАН України 2014
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/146597
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Invariant Poisson Realizations and the Averaging of Dirac Structures / J.A. Vallejo, Y. Vorobiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We describe an averaging procedure on a Dirac manifold, with respect to a class of compatible actions of a compact Lie group. Some averaging theorems on the existence of invariant realizations of Poisson structures around (singular) symplectic leaves are derived. We show that the construction of coupling Dirac structures (invariant with respect to locally Hamiltonian group actions) on a Poisson foliation is related with a special class of exact gauge transformations.