The Variety of Integrable Killing Tensors on the 3-Sphere

Integrable Killing tensors are used to classify orthogonal coordinates in which the classical Hamilton-Jacobi equation can be solved by a separation of variables. We completely solve the Nijenhuis integrability conditions for Killing tensors on the sphere S³ and give a set of isometry invariants for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
1. Verfasser: Schöbel, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/146598
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Variety of Integrable Killing Tensors on the 3-Sphere / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146598
record_format dspace
fulltext
spelling irk-123456789-1465982019-02-11T01:23:42Z The Variety of Integrable Killing Tensors on the 3-Sphere Schöbel, K. Integrable Killing tensors are used to classify orthogonal coordinates in which the classical Hamilton-Jacobi equation can be solved by a separation of variables. We completely solve the Nijenhuis integrability conditions for Killing tensors on the sphere S³ and give a set of isometry invariants for the integrability of a Killing tensor. We describe explicitly the space of solutions as well as its quotient under isometries as projective varieties and interpret their algebro-geometric properties in terms of Killing tensors. Furthermore, we identify all Stäckel systems in these varieties. This allows us to recover the known list of separation coordinates on S³ in a simple and purely algebraic way. In particular, we prove that their moduli space is homeomorphic to the associahedron K₄. 2014 Article The Variety of Integrable Killing Tensors on the 3-Sphere / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A60; 14H10; 14M12 DOI:10.3842/SIGMA.2014.080 http://dspace.nbuv.gov.ua/handle/123456789/146598 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Integrable Killing tensors are used to classify orthogonal coordinates in which the classical Hamilton-Jacobi equation can be solved by a separation of variables. We completely solve the Nijenhuis integrability conditions for Killing tensors on the sphere S³ and give a set of isometry invariants for the integrability of a Killing tensor. We describe explicitly the space of solutions as well as its quotient under isometries as projective varieties and interpret their algebro-geometric properties in terms of Killing tensors. Furthermore, we identify all Stäckel systems in these varieties. This allows us to recover the known list of separation coordinates on S³ in a simple and purely algebraic way. In particular, we prove that their moduli space is homeomorphic to the associahedron K₄.
format Article
author Schöbel, K.
spellingShingle Schöbel, K.
The Variety of Integrable Killing Tensors on the 3-Sphere
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Schöbel, K.
author_sort Schöbel, K.
title The Variety of Integrable Killing Tensors on the 3-Sphere
title_short The Variety of Integrable Killing Tensors on the 3-Sphere
title_full The Variety of Integrable Killing Tensors on the 3-Sphere
title_fullStr The Variety of Integrable Killing Tensors on the 3-Sphere
title_full_unstemmed The Variety of Integrable Killing Tensors on the 3-Sphere
title_sort variety of integrable killing tensors on the 3-sphere
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146598
citation_txt The Variety of Integrable Killing Tensors on the 3-Sphere / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT schobelk thevarietyofintegrablekillingtensorsonthe3sphere
AT schobelk varietyofintegrablekillingtensorsonthe3sphere
first_indexed 2025-07-11T00:18:11Z
last_indexed 2025-07-11T00:18:11Z
_version_ 1837307623845658624