Exact Free Energies of Statistical Systems on Random Networks

Statistical systems on random networks can be formulated in terms of partition functions expressed with integrals by regarding Feynman diagrams as random networks. We consider the cases of random networks with bounded but generic degrees of vertices, and show that the free energies can be exactly ev...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Sasakura, N., Sato, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146613
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Exact Free Energies of Statistical Systems on Random Networks / N. Sasakura, Y. Sato // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146613
record_format dspace
fulltext
spelling irk-123456789-1466132019-02-11T01:23:27Z Exact Free Energies of Statistical Systems on Random Networks Sasakura, N. Sato, Y. Statistical systems on random networks can be formulated in terms of partition functions expressed with integrals by regarding Feynman diagrams as random networks. We consider the cases of random networks with bounded but generic degrees of vertices, and show that the free energies can be exactly evaluated in the thermodynamic limit by the Laplace method, and that the exact expressions can in principle be obtained by solving polynomial equations for mean fields. As demonstrations, we apply our method to the ferromagnetic Ising models on random networks. The free energy of the ferromagnetic Ising model on random networks with trivalent vertices is shown to exactly reproduce that of the ferromagnetic Ising model on the Bethe lattice. We also consider the cases with heterogeneity with mixtures of orders of vertices, and derive the known formula of the Curie temperature. 2014 Article Exact Free Energies of Statistical Systems on Random Networks / N. Sasakura, Y. Sato // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 12 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05C82; 37A60; 46N55; 82B20; 81U15; 83C15 DOI:10.3842/SIGMA.2014.087 http://dspace.nbuv.gov.ua/handle/123456789/146613 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Statistical systems on random networks can be formulated in terms of partition functions expressed with integrals by regarding Feynman diagrams as random networks. We consider the cases of random networks with bounded but generic degrees of vertices, and show that the free energies can be exactly evaluated in the thermodynamic limit by the Laplace method, and that the exact expressions can in principle be obtained by solving polynomial equations for mean fields. As demonstrations, we apply our method to the ferromagnetic Ising models on random networks. The free energy of the ferromagnetic Ising model on random networks with trivalent vertices is shown to exactly reproduce that of the ferromagnetic Ising model on the Bethe lattice. We also consider the cases with heterogeneity with mixtures of orders of vertices, and derive the known formula of the Curie temperature.
format Article
author Sasakura, N.
Sato, Y.
spellingShingle Sasakura, N.
Sato, Y.
Exact Free Energies of Statistical Systems on Random Networks
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Sasakura, N.
Sato, Y.
author_sort Sasakura, N.
title Exact Free Energies of Statistical Systems on Random Networks
title_short Exact Free Energies of Statistical Systems on Random Networks
title_full Exact Free Energies of Statistical Systems on Random Networks
title_fullStr Exact Free Energies of Statistical Systems on Random Networks
title_full_unstemmed Exact Free Energies of Statistical Systems on Random Networks
title_sort exact free energies of statistical systems on random networks
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146613
citation_txt Exact Free Energies of Statistical Systems on Random Networks / N. Sasakura, Y. Sato // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 12 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT sasakuran exactfreeenergiesofstatisticalsystemsonrandomnetworks
AT satoy exactfreeenergiesofstatisticalsystemsonrandomnetworks
first_indexed 2025-07-11T00:19:45Z
last_indexed 2025-07-11T00:19:45Z
_version_ 1837307722426482688