Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology

We introduce some algebraic geometric models in cosmology related to the ''boundaries'' of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a po...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Manin, Y.I., Marcolli, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146619
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology / Y.I. Manin, M. Marcolli // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 50 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146619
record_format dspace
fulltext
spelling irk-123456789-1466192019-02-11T01:23:46Z Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology Manin, Y.I. Marcolli, M. We introduce some algebraic geometric models in cosmology related to the ''boundaries'' of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point x. This creates a boundary which consists of the projective space of tangent directions to x and possibly of the light cone of x. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from ''the end of previous aeon'' of the expanding and cooling Universe to the ''beginning of the next aeon'' is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary. 2014 Article Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology / Y.I. Manin, M. Marcolli // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 50 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 85A40; 14N05; 14G35 DOI:10.3842/SIGMA.2014.073 http://dspace.nbuv.gov.ua/handle/123456789/146619 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce some algebraic geometric models in cosmology related to the ''boundaries'' of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point x. This creates a boundary which consists of the projective space of tangent directions to x and possibly of the light cone of x. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from ''the end of previous aeon'' of the expanding and cooling Universe to the ''beginning of the next aeon'' is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary.
format Article
author Manin, Y.I.
Marcolli, M.
spellingShingle Manin, Y.I.
Marcolli, M.
Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Manin, Y.I.
Marcolli, M.
author_sort Manin, Y.I.
title Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology
title_short Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology
title_full Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology
title_fullStr Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology
title_full_unstemmed Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology
title_sort big bang, blowup, and modular curves: algebraic geometry in cosmology
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146619
citation_txt Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology / Y.I. Manin, M. Marcolli // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 50 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT maninyi bigbangblowupandmodularcurvesalgebraicgeometryincosmology
AT marcollim bigbangblowupandmodularcurvesalgebraicgeometryincosmology
first_indexed 2025-07-11T00:20:18Z
last_indexed 2025-07-11T00:20:18Z
_version_ 1837307818664787968